

Evaluation of Localized Flux and Loss Distribution in The Corner Joint and T Joint of 1000 kVA Transformer Core

by

Shahanom Uthman (Matric no. 0430910013)

A thesis submitted In fulfillment of the requirements for the degree of Doctor of Philosophy

School of Electrical System Engineering UNIVERSITI MALAYSIA PERLIS

2013

UNIVERSITI MALAYSIA PERLIS

		DECLARATION OF T	THESIS	
Author's full name	:	Shahanom bin Uthman		
Date of birth	:	1 st July 1964		
Title	:	Evaluation of Localized Flucture Joint and T Joint of 1000 k	ux and Loss Distribution in The Corner VA Transformer Core	
Academic Session	:	2012-2013		
I hereby declare that	the thes	is becomes the property of U	niversity Malaysia Perlis (UniMAP) and	
to be placed at the lib	orary of	UniMAP. This thesis is class	sified as:	
			S S S S S S S S S S S S S S S S S S S	
CONFIDENT	TIAL	{Contains confidential info 1972}	rmation under the Official Secret Act	
RESTICTED		{Contains restricted inform	ation as specified by the organization	
		where research was done}		
\checkmark		NO		
OPEN ACCESS agree that my thesis is to be made immediately available as hard				
	.en	copy or on-line open access	s (full text)	
.5				
I, the author, give pe	ermissio	n to the UniMAP to reprodu	ace this thesis in whole or in part for the	
purpose of research o	or acade	mic exchange only (except d	uring a period of $\underline{10}$ years, if so requested	
above).				
			Certified by:	
SIGN	ATURE	2	SIGNATURE OF SUPERVISOR	
Matric N	Matric No: 0430910013 Prof Dr. Ismail Bin Daut			
			NAME OF SUPERVISOR	
		i		

Kesan ke Atas Fluks dan Kehilangan Kuasa di Sudut Tepi dan Penyambungan T di Dalam Teras Alatubah 1000 kVA

ABSTRAK

Penyelidikan ini melibatkan kerja pengujian dan penilaian keatas teras alatubah 1000 kVA menggunakan bahan GO yang dicampurkan dengan 3% silikon. Pengujian dilakukan keatas tiga model teras alatubah dengan rekabentuk 45° bentuk V di penyambung T dengan tindanan 3mm, 45° bentuk V di penyambung T dengan tindanan dan 90° penyambungan T dengan tindanan 10 mm. Semua teras alatubah menggunakan penyambungan sudut 45°. Pengukuran agihan fluks menggunakan teknik memasang siri lilitan mencari fluks pada permukaan lapisan teras. Pengukuran meliputi variasi secara besaran, arah komponen asas dan harmonik fluks mengikuti arah mudah dan keras bersama dengan komponen fluks arah normal. Pengukuran secara thermometrik dengan cara pengambilan variasi suhu menaik di gunakan untuk mendapatkan nilai kehilangan pada teras tanpa beban. Teras 45° bentuk V penyambungan T dengan tindanan 3mm menunjukkan kehilangan kuasa yang paling rendah jika dibandingkan dengan 2 teras model yang lain pada nilai 0.845 W/kg semasa nilai induksi 1.5T 50Hz. Nisbah perbezaan kehilangan kuasa diantara 45° bentuk N di penyambung T dengan tindanan 3mm dengan teras tindanan 5mm dan 90° penyambungan T tindanan 10mm adalah 1.3% dan 5.79%. Faktor binaan Yeras untuk untuk tindanan 3mm. 5mm dan 10mm adalah pada nilai 1.11,1.15 and 1.185. Didapati kehilangan kuasa paling tinggi berlaku dilokasi yang mengalami bacaan fluks yang tinggi. Teras T dengan penyambungan dan 90° mempunyai nilai fluks harmonik ketiga yang paling tinggi. Fluks pusaran didapati berlaku di sudut tepi teras tetapi lebih ketara kehadirannya di bahagian penyambungan T teras. Fluks pusaran berlaku dengan nilai fluks keras yang tinggi sekali didalam teras dan 90° penyambungan T mengeluarkan kehilangan kuasa yang paling tinggi pada 0.894W/kg. Kehilangan kuasa yang banyak didapati terletak dibahagian penyambungan tengah teras pada kedua belah bahagian sudut. Perpindahan fluks diantara lapisan teras adalah satu proses yang komplex dimana fluks asas dan normal bergerak dalam masa yang sama. Rekabentuk geometri teras dan jarak tindanan adalah faktor utama untuk mempengaruhi perjalanan fluks secara unifom yang boleh mengurangkan kehilangan kuasa teras. Hasil penyelidikan ini telah menunjukkan bahawa teras 45° bentuk V di penyambung T dengan tindanan 3mm telah mengeluarkan kehilangan kuasa yang paling rendah dan didapati paling efisien. Sekiranya teras ini digunakan didalam system agihan TNB, dijangkakan penjimatan yang boleh dicapai adalah sebanyak RM69.9 juta setahun.

The Effect in Corner Joint and T Joint on Localized Flux and Loss Distribution in 1000 kVA Transformer Core

ABSTRACT

The work involved in this thesis relates to the measurement and evaluation on localized flux and losses distribution in 1000 kVA three phase transformer core using 3% silicon doped Grain Oriented (GO) material. The experiment was carried out on three (3) type of transformer core models namely the 45° V notch T joint with 3mm overlap distance, 45° V notch T joint with 5mm overlap distance and 90° butt lap T joint design with 10 mm overlap distance. Measurement work dealt with variation of the magnitude and directional of the fundamental components as well as the harmonic components. Power loss measurement was conducted using three phase no load loss method. A few array of search coils made up of orthogonal, single turn and normal search coils were used to detect the in-plane and normal flux. Thermometric method adopting variation of temperature rise was selected to capture the power loss. The V notch D joint 3mm overlap design had shown the lowest power loss at 0.845 W/kg at 1.5T 50Hz compared to the V notch T joint 5mm overlap and butt lap 10mm design with difference of 1.3% and 5.79% respectively. Building factor of the V notch 3mm proved to be the lowest compared to the other two design which is at 1.11,1.15 and 1.185. It was noticed highest flux values were concentrated in the inner overlap area of the corner joint. Highest losses are spotted at the same location where highest inplane flux was presented. The third harmonic flux are highest in the butt lap T joint area. Rotational flux and losses were also detected in corner joint and very significant existence in the T joint area and butt lap design had produced the highest core loss at 0.894 W/kg. Highest core loss is located in the T joint area near both side of the inner corner of the center limb. The flux transfer works between lamination in a complex manner in which a combination of in-plane and normal flux move simultaneously within the laminations. Core geometry design and overlap distance is believed to be the critical factors that can influence the flux flow uniformity which ultimately can reduce power loss in the core. All in all V notch T joint 3mm core design is found to be the most efficient and with optimum performance. It is estimated that a saving of RM69.9 million per year can be achieved if the V notch T joint 3mm core design is utilized in TNB distribution network system.

TABLE OF CONTENTS

		PAGE
THE	CSIS DECLARATION	i
ACK	KNOWLEDGMENT	ii
TAB	BLE OF CONTENTS	iii
LIST	Γ OF TABLES	xi
LIST	r of figures	xiv
LIST	Γ OF ABBREVIATIONS, SYMBOL, SPECIALIZED	
NON	MENCLATURE	xxvi
ABS	TRAK	xxviii
ABS	TRACT	xxix
CHA	APTER 1 INTRODUCTION	
1.1. /	Aim of Investigation	1
1.2. I	Research Objective	2
CHA	APTER 2 LITERATURE REVIEW	
2.0	Research Material	3
2.1	Electrical steel	3
2.2	Electrical Steel Development	7
2.3	Material Composition	11
2.4	Magnetic Basic Term	14
2.5	Magnetism Behaviour	15
2.6	Magnetism in Ferromagnetic Material	16

2.7	Ferror	nagnetic Properties	20
2.8	GO Manufacturing Process		
2.9	Challenges in Development of GO		
	2.9.1	Optimization in Chemical Composition	27
	2.9.2	Optimization in Processing Method	28
	2.9.3	Special Made Grades For Specific Applications	29
2.10	Magne	etic Anisotropy	29
2.11	Indust	ry Specification For GO	34
2.12	Measu	irement For Power Loss	35
	2.12.1	Measurement of Overall Power Loss	35
	2.13.2	Type of Power Loss	38
		2.13.2.1 Power Loss Under Alternating Magnetization	39
		2.13.2.2 The Power Losses Under The Rotational Magnetization	41
2.13	Factor	Controlling Power Loss in Transformer Core	43
		2.13.1 Corner Joint	44
	~	2.13.2 T-Joint	45
	\bigcirc	2.13.3 Stacking Method	51
		2.13.4 Overlap Length	51
		2.13.5 Physical Stress	52
		2.13.6 Flux Harmonic	53

CHAPTER 3 EXPERIMENTAL APPARATUS AND MEASURING TECHNIQUES

3.1 Core Model	
----------------	--

	3.1.1 Core Geometry Design and Material	54
	3.1.2 Core Construction	57
	3.1.3 Test Platform	60
3.2	Investigation on Core Parameters	61
3.3	Measuring Objectives	62
	3.3.1 Measuring Circuit	63
	3.3.2 Search Coils	65
	3.3.2.1 Orthogonal Search Coil	65
	3.3.2.2 Normal Search Coil	69
	3.3.2.3 Large Search Coil	71
	3.3.2.4 Positioning of Search Coil	71
	3.3.2.5 Search CollPolarity and Testing	73
3.4	Calculation of Magnitude and Direction of Localized Flux Density	74
3.5	Localized Power Loss Measurement	78
	3.5.1 Thermistor Circuit	79
	3.5.2 Localized Loss in Epstein Frame	82
	3.5.3 Localized Loss in Core Lamination	83
3.6	Harmonic Measurement	84
3.7	Domain Investigation	85
	3.7.1 CRGO Specimen Preparation	85
	3.7.2 Domain Pattern	86
3.8	Accuracy of the Flux Density Measurement	88
3.8	Analysis of Result Findings	8

CHAPTER 4 RESULTS

4.1.	Speci	fic Power Loss	90
4.2	Effect	t in Numbers of Layers to Power Loss	91
4.3	Overa	all Power Loss and Building Factor	94
4.4	Flux l	Flow and Power Loss Distribution in The Transformer Core	96
	4.4.1	Variation of the Flux Density in the Corner-Joint	96
	4.4.2	Instantaneous Magnitude and Direction of the	
		Localized Flux Density	100
		4.4.2.1 Distribution of Fundamental (50Hz) Component of	
		Localized Flux Density	100
		4.4.2.2 Distribution of the Fundamental Peak	
		In-Plane Flux Density	101
		4.4.2.3 Distribution of the Third Harmonic Peak	
		In-Plane Flux Density	102
		4.4.2.4 Distribution of the Peak Normal Flux Density	104
		4.4.2.5 Variation of Localized Power Loss at Corner Joint	105
	\bigcirc	4.4.2.6 Factors Influencing the Overall Power Loss	106
	4.4.3	Variation of the Flux Density in the T-joint	109
		4.4.3.1 Measured Flux Density in T joint Core Models	112
		4.4.3.2 Variation of Localized Power Loss	114
		4.4.3.3 Variation of Localized Flux Density	116
	4.4.4	Analysis of Distribution of the Harmonic Components Flux	
		in the T-joint	118
		4.4.4.1 Distribution of Fundamental Component (50 Hz) of	

		Localized Flux Density	118
		4.4.4.2 Distribution of the Third Harmonic (150 Hz)	
		Component of Localized Flux Density	142
	4.4.5	Locus of the Localised Flux Density	150
		4.4.5.1 Locus of Fundamental Component of Localized	
		In-Plane Flux density	150
		4.4.5.2 Locus of Third Harmonic of Localized	
		In-Plane Flux Density	152
		4.4.5.3 Locus of Third Harmonic of Localized	
		In-Plane Flux Density	153
	4.4.6	Distribution of the Peak Harmonic Flux Density	153
		4.4.6.1 Distribution of the Eundamental Peak	
		In-Plane Flux Density	156
		4.4.6.2 Distribution of the Third Harmonic Peak	
		In-Plane Flux Density	156
		4.4.6.3 Distribution of the Fifth Harmonic Peak	
		In-Plane Flux Density	160
		4.4.6.4 Distribution of the Peak Normal Flux Density	162
4.5	Variat	tion of Power Loss	164
	4.5.1	Variation of Power Loss	165
	4.5.2	Variation of the Overall Power Loss	172
4.6	Finite	Element Method (FEM) Analysis	173

CHAPTER 5 DISCUSSION

5.1.	Flux Path a	and Flux Transfer Mechanism at the Corner Joint of the		
	Three Phas	e Transformer Core	179	
5.2.	The Instantaneous Flux Path and Flux Transfer Mechanism			
	at the T-Jo	int of the Three Phase Core	183	
	5.2.1 Tot	al flux in the Red (R) phase limb is maximum ($\omega t = 0$)	183	
	5.2.2 Tot	al flux in the yellow (Y) phase middle limb		
	is 1	maximum ($\omega t = 60$)	188	
	5.2.3 Tot	al flux in the blue (B) phase limb		
	is n	naximum (ωt =120°)	192	
5.3	Distributio	n of The Instantaneous Fundamental (50HZ) Component of		
	Localized 1	Flux Density in the Three Phase Transformer Core	194	
5.4	Relationsh	ip Between Localized Fundamental and Third		
	Harmonic	(150 Hz) Flux in the Three Phase Transformer Core	202	
5.5	Rotational	Flux	204	
	5.5.1 Rot	ational Flux of The 50Hz Component of Localised		
	Flu	x Density	204	
	5.5.2 Cor	mparison of Rotational Flux of the 50 Hz Component		
	Bet	ween The Cores Assembled From Amorphous		
	PO	WERCORE and Silicon Iron Materials	207	
	5.5.3 Con	nparison of Rotational Flux of The 150 Hz		
	Cor	mponent Between The Cores Assembled		
	Fro	m Amorphous POWERCORE and Silicon Iron Materials	209	
	5.5.4 Eff	ects of Rotating Flux on Local Power Loss	211	

5.6	Distri	bution of the Peak In-Plane Flux Density	215
	5.6.1	Distribution of the Fundamental Peak Flux Density	215
	5.6.2	Distribution of the Peak Value of the Third Harmonic Compone	nt
		of Flux Density	220
5.7	Distri	bution of the Peak Normal Flux Density	221
5.8	Local	ized and Overall Power Loss in the Three Phase Core	222
5.9	Influe	nce of Flux Distribution on Building Factor	226
5.10	Cost H	Benefit Analysis	243
5.11	Propo	sal For Future Work	249
CHAI	PTER (5 CONCLUSION	
6.	Concl	usion	250
APPE	NDIX	A xeo	253
APPE	NDIX	B	255
REFE	REFERENCES		
LIST	OF PU	BLISHED PAPER	261
		NIS IN	
	\bigcirc		

LIST OF TABLES

NO.		PAGE
2.1.	Transformer efficiency in TNB network system	10
2.2	GO material composition in BS6404 (1984)	12
2.3	Benefit of doping the GO with specific material by Beckley (2002)	12
2.4	Amount of silicon added to GO and losses specification in BS 6404 (1984	4)13
2.5	Established GO Standard	34
3.1	Magnetic, mechanical and physical properties of GO M5 grade by	
	Thyssen Krupp Steel Brochure (2008)	58
3.2	Tolerance for the lamination cutting by Malaysia Transformer	
	Manufacturing Bhd. Quality Assurance Guideline (2009)	67
3.3	Specification of the thermistor by Tayao Technology (2010)	80
4.1	Table 4.1 Effect of overlap length in core assembly to power loss in the	
	corner calculated from the localized power loss and overall power loss	
	measurement at 1.5T, 50Hz	107
4.2	Magnitude of flux at T joint area during sinusoidal voltage condition	111
4.3	Average peak of fundamental component in-plane flux density [Tesla]	
	distribution in the V notch 3mm, the V notch 5mmand the butt lap	
	of T joint of three phase core at different area of the core at 1.5T, 50Hz	158
4.4	Average peak of third harmonic component flux density [mT]	
	distribution in the V notch 3mm, the V notch 5mm and the butt	
	lap of T joint of three phase core at different area of the core	
	at 1.5T, 50Hz	160

Average peak of fifth harmonic component flux density [mT]	
distribution in the V notch 3mm, the V notch 5mm and the butt	
lap of T joint of three phase core at different area of the core	
at 1.5T, 50Hz	162
The variations in the average magnitude of the peak normal flux	
density distribution in the V notch 3mm, the V notch 5mm and	
the butt lap of T joint of three phase core at different area of the core	
at 1.5T, 50Hz	164
Average localized loss distribution in the V notch 3mm, V notch	
5mm and butt lap in different layers of T joint in three phase core	
at different area of the cores at flux density of 1.5T, 50 Hz	171
Effect on the different type of T joint design on the power loss	
distribution in the corner and the T joint area from localized	
power loss and overall power loss measurement at 1.5T 50Hz	172
Localised rotational loss in the T joint cores at a core flux density	
of 1.5Tesla, 50Hz	218
Average peak of the fundamental component of flux density	
distribution in the core	234
Average localised loss distribution in three phase core V notch	
3mm at different core flux densities	241
Effect of core flux density on the localised power loss due to the	
T joint in V notch 3mm core	241
TNBD Distribution Transformer Demand Forecast From 2008-2015	243
Capitalization cost for the three core models	247
	Average peak of fifth harmonic component flux density [mT] distribution in the V notch 3mm, the V notch 5mm and the butt lap of T joint of three phase core at different area of the core at 1.5T, 50Hz The variations in the average magnitude of the peak normal flux density distribution in the V notch 3mm, the V notch 5mm and the butt lap of T joint of three phase core at different area of the core at 1.5T, 50Hz Average localized loss distribution in the V notch 3mm, V notch 5mm and butt lap in different layers of T joint in three phase core at different area of the cores at flux density of 1.5T, 50 Hz Effect on the different type of T joint area from localized power loss and overall power loss measurement at 1.5T 50Hz Localised rotational loss in the T joint cores at a core flux density of 1.5Tesla, 50Hz Average peak of the fundamental component of flux density distribution in the core Average localised loss distribution in three phase core V notch 3mm at different core flux densities Effect of core flux density on the localised power loss due to the T joint in V notch 3mm core TNBD Distribution Transformer Demand Forecast From 2008-2015 Capitalization cost for the three core models

5.7 Saving gained from using 1000kVA distribution transformer
assembled with the V notch T- joint 3mm core compared to
the V notch T joint 5mm, and butt lap core design 248

o this term is protected by original copyright

LIST OF FIGURES

NO.		PAGE
2.1.	Global GO producers in 2010	4
2.2.	Three axes of rolling direction for the electrical steel domain structure by Beckley 2002	5
2.3	Rolling direction for the isotropic and anisotropy electrical steel by Thyssen Krupp (2008)	6
2.4	Polydirectional permeabilities between anisotropy and isotropic steel by Arnold Magnetic Technologies(2008)	7
2.5	Showing the laser irradiation method to produce Hi-B GO steel by Nippon Steel (1987)	8
2.6	Improvement in core losses by Nippon Steel (2000)	9
2.7	Type of GO losses against induction at 50Hz by Nippon Steel (1987)	11
2.8	Graph B versus H and M versus H during initial magnetization process	17
2.9	Domain crystal structure magnetic material by Parker, (1990)	18
2.10	Direction pattern in magnetic materials	18
2.11	Display Bloch wall and movement of magnetic domain during magnetization process	19
2.12	Movement of domain wall to reduce the external fields and using minimum internal energy	19
2.13	Hysteresis curve in magnetic material BS6404, (1986)	21
2.14	Manufacturing process of conventional grade GO Thyssen Krupp	25
2.15	Manufacturing process Hi-B grade GO by Thyssen Krupp	26
2.16	Typical grade M5 losses at B of 1.5 T rolling direction and additional losses with deviation to rolling direction by Kryfs Component (2004)	27
2.17	Nature of flux distribution in (a) isotropy and (b) anisotropy by Basir (2009)	30
2.18	Magnetization curve to form the desired GO properties by Jiles (1995)	31

2.19	GO crystal structure called body centered cubic by Jiles (1995)	32
2.20	GO and amorphous during saturation by Daut (1992)	32
2.21	Graph shows the relationship between losses and GO grain size by Jiles (1995)	33
2.22	Schematic diagram developed by Steinmetz for measuring iron losses in magnetic circuit	36
2.23	Three type of magnetization conditions	39
2.24	GO losses into hysteresis and eddy currents components by Nippon Steel Corporation (1987)	41
2.25	The rotational magnetization and the orthogonal components of the magnetic field and flux density by Zurek (2005)	42
2.26	Comparison of the power loss characteristics for the alternating and the rotational magnetization by Zurek (2005)	44
2.27	Loci of the 50Hz component of the localized flux density within the (a) 45° -90° (b) 45° offset T-joint by Moses A.J. (1974)	47
2.28	Localized power loss distribution in the (a) $45^{\circ}-90^{\circ}$ (b) 45° offset T-joint of the three phase three limb transformer assembled from GO material at a core flux density of 1.6T, 50Hz by Moses et al , (1974)	48
2.29	Distribution of the peak of third harmonic flux density (a) 45°-90° (b) 45° offset T-joint of three phase three limb transformer assembled from GQ material at a core flux density of 1.6T, 50Hz by Moses A.J. et al, (1974)	49
2.30	Various type of T-joint and mitred corner joint design for three phase three limb transformer core applied by transformer manufacturers world wide by Dasgupta (2002)	50
3.1	But lap 90° T joint design of type 1 core model	55
3.2	Method to calculate the overlap distance from the T joint peak	55
3.3	3mm offset overlap of 45° V notch of type 2 core model	56
3.4	5mm offset overlap of 45° V notch of type 3 core model	57

3.5	Sample of GO M5 profile tested at 1.5T 50Hz for losses (a) and thickness (b) by Kryfs Power Components Ltd India Laboratory Report, (2009)	59
3.6	Test platform used in the experiment work	61
3.7	Circuit diagram for overall power loss	63
3.8	Circuit to measure localized power loss and localized flux density	64
3.9	Construction of orthogonal search coil	67
3.10	Actual orthogonal search coil fabricated onto a center limb painted with urethane seal coating	68
3.11	Method to twist the search coils	69
3.12	Construction of normal search coil	70
3.13	Sample of normal search coils located in the yoke	70
3.14	The location 210 mm search coil in the core	71
3.15	Location of (a) orthogonal and (b) normal search coil in the core	72
3.16	Checking of search coil to indicate same phase and polarity	73
3.17	Thermistor circuit	80
3.18	Construction of 25 cm baby Epstein frame and test circuit	81
3.19	Epstein frame and the thermistor circuit	82
3.20	Graph displays linear relationship of the thermistor temperature in the core by Daut (1992)	83
3.21	Excitation current waveforms by Kulkarni and Khaparde, (2004)	84
3.22	Specimen is embedded in a mould (a) and kept in a block mixture of cold setting resin (b) and hardener (c). The block is then removed from the mould by applying pressure(d). The specimen(e) is ready for laboratory observation	87
3.23	GO Domain pattern observations	88

4.1	Power Loss of M5 using Epstein Test Frame	90
4.2	Space Factor for M5 Cut Lamination	93
4.3	Effect of Number of Layers to Power Loss	93
4.4	Overall Power Loss For The 3 Core Model	95
4.5	Building Factor for 3 Core Model	96
4.6	Location of search coils placed on the lamination along line 1, 2 and 3	97
4.7	In-plane flux distribution along line !	98
4.8	Normal flux along line 2	98
4.9	In-plane flux along line 3	99
4.10	Distribution of the fundamental component of localised flux density in the corner-joint at difference instant in time when a) $\omega t = 0^{\circ} b$ $\omega t = 30^{\circ} c$ $\omega t = 60^{\circ} and d$ $\omega t = 90^{\circ} at 1.5T$, 50Hz	101
4.11	Distribution of the fundamental peak flux density in-plane of the l lamination in the corner joint of three phase mitred core, at 1.5T, 50Hz	102
4.12	Distribution of the third harmonic peak flux density in-plane of the lamination in the corner joint of three phase mitred core, at 1.5T, 50Hz.	103
4.13	Distribution of the fundamental peak flux density normal of the lamination in the corner joint of three phase mitred core, at 1.5T, 50Hz.	104
4.14	Contour power loss in the corner joint of three phase mitred core at 1.5T 50Hz	105
4.15	Localised power loss distribution in the corner joint of three phase mitred core, at 1.5T, 50Hz	106
4.16	Percentage increase in localized losses compared to average losses in the core limb toward variation in overlap length	108
4.17	Comparison between overall power loss and localized loss at 1.5T, 50 Hz	108
4.18	Flux flows into T joint of core with dot convention	110
4.19	Contour of the flux density in T joint area at flux density of 1.5T, frequency of 50Hz in 3mm offset overlap V notch	112

4.20	Contour of the flux density in T joint area at flux density of 1.5T, frequency of 50Hz in 5mm offset overlap V notch	113
4.21	Contour of the flux density in T joint area at flux density of 1.5T, frequency of 50Hz in 90° butt lap	113
4.22	Distribution of the localised power loss in (a) the V notch 3mm, (b) the V notch 5 mm and (c) the butt lap of T-joint of three phase core at 1.5T, 50 Hz	115
4.23	Local variations in the Tesla of the fundamental peak in-plane flux density of the lamination in (a) the V notch 3mm, (b) the V notch 5 mm and (c) the butt lap of T joint of three phase core at 1.5T, 50Hz	117
4.24	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint of three phase core at different instant in time when $\omega t = 0^{\circ}$	120
4.25	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 0^{\circ}$	121
4.26	Distribution of the fundamental component of localised normal flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 0^{\circ}$	122
4.27	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in T-joint of three phase core at different instant in time when $\omega t = 30^{\circ}$	124
4.28	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in T-joint of three phase core at different instant in time when $\omega t = 30^{\circ}$	125
4.29	Distribution of the fundamental component of localised normal flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in T-joint of three phase core at different instant in time when $\omega t = 30^{\circ}$	126
4.30	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T-joint of three phase core at different instant in time when $\omega t = 60^{\circ}$	127

4.31	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 60^{\circ}$	128
4.32	Distribution of the fundamental component of localised normal flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 60^{\circ}$	129
4.33	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 90^{\circ}$	131
4.34	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 90^{\circ}$	132
4.35	Distribution of the fundamental component of localised normal flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 90^{\circ}$	133
4.36	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 120^{\circ}$	135
4.37	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 120^{\circ}$	136
4.38	Distribution of the fundamental component of localised normal flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 120^{\circ}$	137
4.39	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 150^{\circ}$	139

4.40	Distribution of the fundamental component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 150^{\circ}$	140
4.41	Distribution of the fundamental component of localised normal flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t = 150^{\circ}$	141
4.42	Distribution of the third harmonic component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t_3 = 0^\circ$ at 1.5T 50Hz	143
4.43	Distribution of the third harmonic component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t_3 = 30^\circ$ at 1.5T 50Hz	144
4.44	Distribution of the third harmonic component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t_3 = 60^\circ$ at 1.5T 50Hz	145
4.45	Distribution of the third harmonic component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t_3 = 90^\circ$ at 1.5T 50Hz	147
4.46	Distribution of the third harmonic component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t_3 = 120^\circ$ at 1.5T 50Hz	148
4.47	Distribution of the third harmonic component of localised in-plane flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at different instant in time when $\omega t_3 = 150^\circ$ at 1.5T 50Hz	149
4.48	Locus in 3mm offset V notch T joint of three phase core in different layers of T joint in three phase core at flux density of he 1.5T, 50Hz	151
4.49	Locus in 5mm offset V notch T joint of three phase core in different layers of T joint in three phase core at flux density of the 1.5T, 50Hz	151

4.50	Locus in butt lap T joint of three phase core in different layers of T joint in three phase core at flux density of the 1.5T, 50Hz	152
4.51	Locus of third harmonic of localized flux density in (a) V notch 3mm (b) V notch 5mm and (c) butt lap in different layers of T joint in three phase core at flux density of the 1.5T, 50Hz	154
4.52	Locus of fifth harmonic of localized flux density in (a) 3mm V notch (b) 5 mm V notch and (c) butt lap in different layers of T joint in three phase core at flux density of the 1.5T, 50Hz	155
4.53	Local variations of the fundamental peak in-plane flux density of the lamination in (a) V notch 3mm, (b) V notch 5 mm and (c) butt lap of T joint of three phase core at 1.5T, 50Hz	157
4.54	Local variations in the T-joint of the third harmonic peak flux density to the fundamental component in-plane of the lamination in (a) V notch 3mm, (b) V notch 5 mm and (c) butt lap of T joint of three phase core at 1.5T, 50Hz	159
4.55	Local variations in the T-joint of the fifth harmonic peak flux density to the fundamental component in-plane of the lamination in (a) the V notch 3mm, (b) the V notch 5 mm and (c) the butt (b) lap of T joint of three phase core at 1.5T, 50Hz	161
4.56	Distribution of the fundamental peak flux density [mT] in the normal direction in (a) V notch 3mm, (b) V notch 5 mm and (c) butt lap of T joint of three phase core at 1.5T, 50Hz	163
4.57	Distribution of the localised power loss in (a) V notch 3mm, (b) V notch 5 mm and (c) the butt lap of T joint of three phase core at 1.5T, 50Hz	167
4.58	Contour and mesh localized power loss distribution in 3mm offset overlap V notch at flux density of 1.5T, frequency of 50Hz	168
4.59	Contour and mesh localized power loss distribution in 5mm offset overlap V notch at flux density of 1.5T, frequency of 50Hz	169
4.60	Contour and mesh localized power loss distribution in 90° butt lap at flux density of 1.5T, frequency of 50Hz	170
4.61	Displayed the 3mm 45°V notch T joint core used for FEM simulation	173
4.62	Shows the FEM result on power loss distribution in the 3mm 45°V notch T joint core	174

4.63	Flux flows at $\omega t = 0^{\circ}$	175
4.64	Flux flows at $\omega t = 30^{\circ}$	175
4.65	Flux flows at $\omega t = 60^{\circ}$	176
4.66	Flux flows at $\omega t = 90^{\circ}$	176
4.67	Flux flows at $\omega t = 120^{\circ}$	177
4.68	Flux flows at $\omega t = 150^{\circ}$	177
5.1	Power losses showing (a) magnitude and (b) contour of transverse flux density in the corner region of three phase mitred core at 1.5T, 50Hz	181
5.2	Showing (a) flux flow in corner joint with rotational flux in the inner corner joint (b) flux transfer mechanism in the corner joint	182
5.3	Distribution of total flux at the V notch 3mm in different layers of T joint core of three phase core in a) in the plane of lamination no.1 and b) normal to the plane of lamination no.1, at an instant when the total flux in the (R) - phase outer limb is maximum ($\omega t = 0$) at 1.5T, 50Hz	184
5.4	Distribution of total flux at the butt lap in different layers of T joint core of three phase core in a) in-plane of lamination no.1 and b) normal to the plane of lamination no.1 at an instant when the total flux in the (R) - phase outer limb is maximum ($\omega t = 0$) at 1.5T, 50Hz	186
5.5	Distribution of total flux at the V notch 3mm in different layers of T-joint core in a) in the plane of lamination no.1 and b) normal to the plane of lamination no.1, at an instant when the total flux in the (Y) - phase centre limb is maximum ($\omega t = 60^{\circ}$) at 1.5T, 50Hz	189
5.6	Distribution of total flux at the butt lap in different layers of T-joint core of three phase core in a) in the plane of lamination no.1 and b) normal to the plane of lamination no.1 and at an instant when the total flux in the (Y) - phase middle limb is maximum ($\omega t = 60^\circ$) at 1.5T, 50Hz	191
5.7	Distribution of total flux at the V notch 3mm in different layers of T joint core in a) in the plane of lamination no.1 and b) normal to the plane of lamination no.1, at an instant when the total flux in	

xxi

	the (B)- phase outer limb is $maximum(wt = 120)$ at 1.5T, 50Hz	196
5.8	Transfer mechanism of the flux in the V notch 3mm in different layers of T joint core configuration	197
5.9	Distribution of total flux at the V notch 5mm in different layers of T joint core in a) in the plane of lamination no.1 and b) normal to the plane of lamination no.1, at an instant when the total flux in the (B) - phase outer limb is a maximum	
	(wt = 120) at 1.5T, 50Hz	198
5.10	Transfer mechanism of the flux in the V notch 5mm in different layers of T joint core configuration	199
5.11	Distribution of total flux at the butt lap in different layers of T joint core of three phase core in a) in the plane of lamination no.1 and b) normal to the plane of lamination no.1 and at an instant when the total flux in the (B) - phase outer limb is a maximum	
	(wt = 120) at 1.5T, 50Hz	200
5.12	Transfer mechanism of the flux in the butt lap in different layers of T joint core configuration	201
5.13	Flux distribution in V notch 3mm core a) third harmonic and b) fundamental component of localised flux density at instant in time when $\omega t = 0$ at 1.5T, 50Hz	205
5.14	Flux distribution in V notch 3mm a) third harmonic and b) fundamental component of localised flux density at instant in time when $\omega t = 30$ at 1.5T, 50Hz	206
5.15	Distribution of the fundamental component of peak transverse flux density in (a) the V notch 3mm, (b) the V notch 5mm, and (c) the butt lap in different layers of T joint core of three phase (d) core at 1.5T, 50 Hz	208
5.16	Comparison of the fundamental component of rotational flux density in the three phase cores among the cores assembled from amorphous POWERCORE (1.35T) and from various silicon iron materials (CGO, HiB and ZDKH) of previous work (1.70T) by Daut (1991)	210
5.17	Comparison of the third harmonic component of rotational flux density in the three phase cores among the cores assembled from amorphous POWERCORE (1.35T) and from various silicon iron materials (CGO, HiB and ZDKH) of previous work	
	(1.70T), by Daut (1991)	212