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PELAKSANAAN PENAPIS PASIF DAN AKTIF DALAM MENGURANGAN 

HARMONIK 

 

 

ABSTRAK 

 

 

 

 

Pemanfaatan beban bukan linear telah menjadi perhatian utama terutama dalam 

industri sistem kuasa. Operasi beban mampu menghasilkan arus dan voltan harmonik yang 

muncul pada rangkaian am titik utiliti-pelanggan (PCC). Tambahan pula, jika harmonik 

terjadi pada frekuensi yang sama ketika sistem elektrik dalam keadaan resonans, ia mampu 

mengakibatkan amplifikasi terhadap herotan harmonik, atau dikenali sebagai resonans 

harmonik. Peranti pembolehubah kelajuan (ASD) merupakan sumber utama harmonik. 

Variasi modulasi indeks yang dihasilkan oleh pengawal fasa modulasi lebar (PWM) akan 

menyebarkan frekuensi harmonik dalam kabel elektrik utama. Keseluruhan komponen 

harmonik bertambah buruk disebabkan oleh kemasukan komponen penyambung arus terus 

(DC link) bagi proses penyatu-arahan arus. Pengenalan penapis pasif (PPF) dan aktif (APF) 

mampu mengurangkan herotan harmonik secara keseluruhan yang berlaku pada kabel 

elektrik utama. Penapis pasif penalaan tunggal mampu mengasingkan herotan harmonik 

relatif terhadap frekuensi penalaan bagi resonans harmonik, walaupun mereka 

memperkenalkan pembatasan terhadap pemampasan kuasa reaktif. Penapis aktif pirau 

melitupi ruang lingkup pemampasan harmonik yang luas pada frekuensi harmonik yang 

tinggi. Penapis aktif pirau mempunyai prestasi yang lebih baik dalam hal peningkatan 

faktor kuasa berbanding penapis pasif penalaan tunggal.  
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IMPLEMENTATION OF PASSIVE AND ACTIVE POWER FILTERS FOR 

HARMONIC MITIGATION 

 

 

ABSTRACT 

 

 

 

 

The utilization of non-linear loads has become a major concern especially in the 

industrial power system. The operation of the loads could draw harmonic currents and 

voltages which appear at the utility-consumer point of common coupling (PCC). In 

addition, if the harmonic occurs at the same frequency when the power system is at 

resonance, it could result in amplification of the harmonic distortion, or known as harmonic 

resonance. Three-phase Adjustable Speed Drives (ASDs) are a common source of 

harmonics. The variation of modulation index of a specific phase-width modulation (PWM) 

controller thus distributes harmonic frequencies within the main power lines. The overall 

harmonic components are further aggravated by the inclusion of DC link components for 

rectification process. The introduction of passive and active power filters (PPFs and APFs) 

thus reduces the overall harmonic current distortion occurring within the main power lines. 

Single-tuned passive filters provide fair harmonic isolation relative to its tuning frequency 

for harmonic resonance, although they introduce limitations on reactive power 

compensation. Shunt active filters cover greater range over harmonic compensation at wide 

harmonic frequencies. Shunt active filters provide greater performance in terms of power 

factor improvement compared to single-tuned passive filters.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 The term „power quality‟ refers to the purity of the voltage and current waveform, 

and a power quality disturbance is a deviation from the pure sinusoidal form. Harmonics 

superimposed on the fundamental are one cause of such deviations. The widespread and 

increasing use of solid state devices in power systems is leading to escalating ambient 

harmonic levels in public electricity supply systems [9].  These devices tends to draw 

currents and voltages with frequencies that are integer multiples of the fundamental 

frequency.  

 

The effect of harmonic distortion is slightly different between single-phase and 

three-phase loads in terms of troublesome harmonic components. The single phase non-

linear loads are most likely to generate triplen harmonics. The triplen harmonics are the 3
rd

 

and odd multiples of the 3
rd

 (9
th

, 15
th

, etc.) of the harmonic components. These harmonics 

could also cause overload on the neutral conductor of a 3-phase 4-wire system and 

circulating current on the delta winding of a delta-wye transformer configuration [10]. On 

the other hand, 3-phase non-linear loads such as three-phase Adjustable Speed Drives 

(ASDs) are most likely to generate primarily 5
th

 and 7
th

 current harmonics and some of the 

higher order harmonics.  
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