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Ciri-ciri Penyerapan Tenaga Oleh Tiub Bulat Berdinding Nipis Melalui  

Beban Dinamik 

 

ABSTRAK 

 

Tiub berdinding nipis adalah salah satu daripada alat penyerap tenaga yang direka untuk 

melesapkan tenaga dan meningkatkan kecekapan struktur bagi menahan hentakan dalam 

peristiwa hentaman. Semasa pelanggaran, tiub berdinding nipis akan melenyapkan tenaga 

kinetik di dalam sesuatu struktur dengan cara menukarkan tenaga kinetik kepada tenaga 

yang lain, sekali gus mengurangkan kesan yang dialami oleh penumpang. Penyelidikan ini 

mengkaji tiub berdinding nipis yang dihentak menegak secara dinamik dengan 

menggunakan penguji pelepasan beban. Model elemen unsur terhingga untuk penghentakan 

tiub telah dibentuk dengan menggunakan perisian LS-DYNA dan keputusan yang baik 

telah diperoleh antara model unsur terhingga dan keputusan eksperimen. Kajian parametrik 

ke atas tiub berdinding nipis telah dilakukan dengan menggunakan model unsur terhingga 

yang telah disahkan. Ciri-ciri penyerapan tenaga yang dianalisis termasuklah kapisiti 

penyerapan tenaga,  beban tinggi terawal, penyerap tenaga spesifik (SEA) dan kecekapan 

beban pelanggaran (CFE). Bentuk, bahan dan geometri tiub divariasikan untuk menyiasat 

kesan menggunakan parameter ini terhadap ciri-ciri penyerapan tenaga. Hasilnya, tiub 

berbentuk bulat mampu menghasilkan ciri-ciri penyerapan tenaga yang lebih baik 

berbanding tiub berbentuk segiempat. Tiub yang diperbuat daripada tiga bahan yang 

berbeza iaitu aluminium aloi AA6061-T6, karbon keluli S1214 dan magnesium aloi 

AZ31B-O telah digunakan dalam LS-DYNA. Didapati bahawa magnesium aloi AZ31B-O 

sangat berpotensi untuk dijadikan sebagai bahan dalam  pembuatan tiub berdinding nipis 

selain daripada aluminium aloi dan karbon keluli memandangkan ia mempunyai keputusan 

yang sangat bagus dari segi beban tinggi terawal, SEA dan CFE. Walaubagaimanapun, 

apabila sesuatu aplikasi tidak menitik beratkan kerosakan struktur dan tidak melibatkan 

manusia, karbon keluli adalah terbaik kerana dapat menyerap lebih banyak tenaga dan 

mempunyai purata beban perlanggaran yang tinggi. Faktor bagi panjang, diameter dan 

ketebalan tiub terhadap ciri-ciri penyerapan tenaga juga telah dikaji. Kesimpulannya, beban 

tinggi terawal dan CFE adalah optimum bagi tiub yang lebih tebal dan besar. Kapasiti 

penyerap tenaga adalah optimum bagi tiub yang lebih tebal, besar dan panjang, sementara 

keputusan SEA adalah optimum untuk tiub yang lebih tebal, kecil dan pendek.  Akhir 

sekali, pengubahsuaian yang dilakukan terhadap tiub asal telah meningkatkan ciri-ciri 

penyerapan tenaga berbanding tiub asal. Kombinasi antara tiub berbentuk kon dan penutup 

berbentuk rata telah dicadangkan sebagai modifikasi tiub yang terbaik kerana ia 

memberikan keputusan yang cemerlang untuk beban tinggi terawal, CFE dan SEA serta 

memberikan keputusan yang sederhana untuk kapasiti penyerapan tenaga. Maklumat 

penyelidikan yang disediakan dalam kajian ini akan menjadi panduan untuk merekabentuk 

tiub berdinding nipis pada masa yang akan datang.  
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An Energy Absorption Characterization of Improved Circular Thin-Walled Tube 

under Dynamic Loading 

 

ABSTRACT 

 

Thin-walled tube is one of the energy absorber devices designed to dissipate energy and 

increase the efficiency of a crashworthiness structure in an impact event. During an 

accident, thin-walled tube dissipates the kinetic energy of the structure and converts the 

kinetic energy into the other form of energy thus minimize the impact experienced by the 

occupant. This research examines the thin-walled tube subjected to axial dynamic crushing 

experiment by using a drop weight impact tester. A nonlinear finite element model for the 

tube crushing has been developed by using LS-DYNA software and a good agreement has 

been achieved between the finite element model and experimental results. The parametric 

studies of the thin-walled tubes have been performed by using the validated FE model. The 

analysis of energy absorption characteristics includes the energy absorption capacity, initial 

peak load, specific energy absorption (SEA) and crush force efficiency (CFE) results. The 

shape, material and geometry of the tube are varied to investigate the effect of using these 

parameters to the energy absorption characteristics. As a result, circular tube is capable to 

provide better energy absorption characteristics compared to the square tube. The tubes 

designed by three different materials which are aluminium alloy AA6061-T6, carbon steel 

S1214 and magnesium alloy AZ31B-O has been developed in LS-DYNA. It was found that 

the magnesium alloy AZ31B-O is highly potential to be created as the thin-walled tube 

material instead of aluminium alloy and carbon steel since it has excellent result in initial 

peak load, SEA and CFE. However, when the applications neglect the damage of the 

structure and does not involving human, carbon steel is the best material as it can absorb 

most energy capacity and high mean crushing force. The effect of length, diameter and 

thickness of the tube to the energy absorption characteristics has been investigated. It was 

concluded that initial peak load and CFE are optimum in thicker and larger tube. Energy 

absorption capacities are optimum in thicker, larger and longer tube while SEA result is 

optimum in thicker, smaller and shorter tube. At the end, the modifications performed on 

the original tube shows an improvement in the energy absorption characteristics compared 

to the current tube designs. A combination of conical tube with flat end cap was proposed 

as the best modified tube since it has excellent results on initial peak load, CFE and SEA 

with moderate results on the energy absorption capacity. Research information provided in 

this study will serve as a guide to design the thin-walled tube in the future. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Project background 

 

Crashworthiness can be defined as the ability of a structure to prevent occupant injuries 

during an impact [1]. Many manufacturers especially in producing vehicles and moving 

part such as automotive, aircraft, ships, railway couches, lift and others machinery aim to 

make an improved crashworthy structure to increase the occupant safety during an accident 

or collision. Energy absorber is the main component to increase efficiency of a 

crashworthiness structure. During an accident, energy absorber dissipates the kinetic energy 

of the structure and converts the kinetic energy into the other form of energy thus minimize 

the impact experienced by the occupant. The impact energy is converted into strain energy 

through structural deformation. In general, the efficiency of the energy absorber is optimum 

when the system can provide maximum energy absorption, stable progressive collapse 

mode, lower initial peak crushing load, longer deformation length, deformation in 

concertina mode with shorter length of fold and produce a large number of fold. The studies 

of crashworthiness have been at interest to many researchers in the past until this date [2-5]. 

Some example of energy absorber structures are thin-walled tube, sandwich structure, 

egg-box material, lattice structure and cellular material. However, the application using the 

thin-walled tube as energy absorber received the most attention from the researchers 
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because it is easy to produce and the structure proved to absorb more energy capacity at 

large deformation of the tube. 

Fig. 1.1 shows the applications of energy absorber in the crash box element of the cars. 

Fig. 1.1(a) illustrates the overall body structure safety cage and Fig. 1.1(b) focuses in the 

crash box element of an AUDI A8 manufactured in year 2011. It is clearly shown that the 

car crash box element uses the square shape of thin-walled tube structure as the energy 

absorber to resist the impact when accident occurs.  

 

 

(a) 

 

(b) 

 

 

(c) 

Fig 1.1: Body structure safety cage and crash box element; (a) Overall structure for AUDI 

A8, (b) Crash box element of AUDI A8 and (c) Crash box element in Honda CR-Z [6]. 
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Besides that, Fig. 1.1(c) shows the combination of main frame, upper frame and lower 

member used as energy absorber in Honda CR-Z. The thin-walled tube of the main frame 

designed to absorb most kinetic energy during the collision by deformation of the structure 

and dissipate the energy to the other members. Regarding to this matter, many researchers 

focused in improving the efficiency of this structure either by using experimental or 

simulation analysis methods [7-8]. 

A lot of methods and modifications had been done by the previous researchers in order 

to analyze and improve the energy absorption characteristics of the thin-walled tube 

structure [9-10]. One of the methods used various shapes of the cross section of the thin 

walled tube such as circular, triangular, square and hexagon that are employed in thin-

walled structure [9, 11]. Furthermore, new material development technology has 

encouraged researchers to use variety of materials available to improve the performance of 

energy absorption characteristics. 

On the other hand, some modifications had been performed by combining different 

types of energy absorber in a single structure. Since the result of the research proved that 

using combination of geometry and making modification on the energy absorber can 

improve the energy absorption characteristic, some of the car manufacturers applied this 

invention in their production [10, 13]. For example, Peugeot from France, a well-known car 

manufacturer tried to improve their occupant safety by modification of the energy absorber 

in their new car model (Peugeot 3008) in 2011 [13]. Fig. 1.2 shows two conical energy 

absorbers positioned between the impact absorption beam and chassis leg to control the 

deformation of the thin-walled tube in the event of collision.  

 

 

 

 

 

 

 

 

 

 

 

 

 

©
 Th
is 
ite
m 
is 
pr
ot
ec
te
d b
y o
rig
ina
l c
op
yri
gh
t 



4 
 

 

Fig. 1.2: Modification made to the thin-walled tube of Peugeot 3008 [13].  

 

1.2 Problem statement 

 

A lot of works have been developed by previous researchers and engineers to 

investigate the thin-walled tube as an energy absorption structure [2-5]. Since investigation 

in thin-walled structure is very wide-ranging, researchers still do not find the best energy 

absorber because their result shows both advantages and disadvantages in their designs [14-

15]. With the growth of material development in industries, the application of using the 

new materials as the energy absorber has created a challenge to the researchers and 

engineers especially to produce both lightweight and high strength structure.  

The design of the energy absorber still need more attention by researchers because there 

are big numbers of geometry, shape and modification can be performed in designing the 

structure. However, perfection can be achieved through further study and analysis of the 

energy absorber. For this concern, this study is made to design an improved thin-walled 

structure by using a new material and some modifications to determine and improve the 

energy absorption characteristics in thin-walled tube structure as the energy absorber. 
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1.3 Objectives 

 

The main objectives of this research are listed as follows: 

a) To develop a nonlinear finite element model for deformation of circular and conical 

thin-walled tubes during dynamic axial loading. 

b) To validate the nonlinear finite element model with experimental results. 

c) To perform parametric studies for tubes under dynamic loading and modify the 

current tube designs to enhance the energy absorption characteristics. 

 

1.4 Scopes 

 

In the initial stage of this research, the specimens of thin-walled tube are tested under 

dynamic axial loading experiment. LS-DYNA finite element analysis software will be used 

to simulate the experimental test and the results obtained by LS-DYNA are compared with 

experiment results for the verification and validation purposes. In addition, LS-DYNA 

software will be also employed to perform the parametric studies and modification of the 

thin-walled tubes. The application of using various materials, shapes, geometries and 

loading conditions of thin-walled tube are discussed in the parametric studies. The main 

findings from the parametric studies are referred in designing several modified thin-walled 

tubes. The thin-walled tube with greatest energy absorption characteristics will be proposed 

at the end of the research. 
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1.5 Significance of study 

  

 The main contribution of this study is to provide additional research information of 

thin-walled tube application as energy absorber. This research is expected to get the energy 

absorption characteristics of improved thin-walled tubes under dynamic axial loading. 

Since the improved thin-walled tube will be more efficient for the energy absorber, it can 

be used as the new structure for the application in industry, military, automotive or 

manufacturing. Thus, the aim to increase the performance of crashworthiness and protect 

structures from serious damages when subjected to dynamic loading can be achieved. 

 Besides that, the effects of using various shapes of thin-walled tube to the energy 

absorption capacity are observed in this study. Furthermore, the study on using various 

geometries such as thickness, length and diameter of the thin-walled tube will help to 

provide a design guideline for the engineers, researchers and designers to create the most 

efficient thin-walled tube in the future. In addition, the results of combining various shapes 

of thin-walled tubes as a single structure also presented in this study. 

 This research also presents the effects of using various tube materials on the energy 

absorption characteristics. The aim is to obtain a light weight and high strength tube that 

can absorb most kinetic energy during the accident. In fact, the weight reduction in the 

automotive application improves the performance of vehicle by reducing the fuel 

consumption, thus reducing the effect of global warming. 
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