Linear optical susceptibilities of the oxoborate (Pb $_3$ O) $_2$ (BO $_3$) $_2$ WO $_4$: Theory and experiment

Abstract

The optical susceptibilities have been investigated experimentally and theoretically for a newly synthesized oxoborate, (Pb $_{3}$ O) $_{2}$ (BO $_{3}$) $_{2}$ WO $_{4}$. The crystal structure is composed of onedimensional 1 $_{\infty}$ [Pb $_{3}$ O] $^{4+}$ chains formed by corner-sharing OPb $_{4}$ tetrahedra. BO $_{3}$ and WO $_{4}$ groups are located around the chains to hold them together via Pb-O bonds. The solidstate fluorescence spectrum exhibited a maximum emission peak at around 375.2 nm with excitation light of 280 nm. UV-Vis diffuse reflectance spectra showed a band gap of about 2.9 eV which compares well with our theoretical band gap of about 2.3 eV obtained using the local density approximation and 2.6 eV using the Engel-Vosko's generalized gradient approximation. We have optimized the atomic positions starting from our X-ray diffraction data so as to minimize the forces on each atom. Aremarkable finding is that this crystal possesses a weak anisotropy among three components of the frequency-dependent dielectric function and a small positive birefringence. This indicates that the oxoborate, (Pb $_{3}$ O) $_{2}$ (BO $_{3}$) $_{2}$ WO $_{4}$, cannot be used to produce second harmonic generation (SHG) and optical parametric oscillation.