
 9

CHAPTER 3

METHODOLOGY

3.1 Introduction

 A success project is developed based on a suitable and reliable project design

cycle. As for this project, the project design is consist of five structured phases which

are:

Phase #1
Identify the scope of the project

Phase #2

Plan the hardware and software

Phase #3
Design, implement and test the hardware

Phase #4
Design, develop and test the software

 Phase #5

Test the overall system operationally

Figure 3.1: Structured Project Design Phase

 10

3.2 Phase #1 - Identify The Scope Of The Project

 A scope of a project covers the overall system requirement which needs to be

accomplished. In this project, it is aim to achieve a wireless communication for data

transmission from a transmitter side to a receiver side by using embedded controller.

The data transmitted is the digital data which has been converted from an analog signal

by the ADC. To implement the application of this project, a Graphical User Interface

(GUI) software needs to be develop for monitoring purpose. A basic block diagram is

illustrated below to have a better understanding on steps taken to obtain the desired

outcome of the project.

Figure 3.2: The Basic Block Diagram

 11

 The main feature of this project would be the wireless communication where it

replaces the cable as the conventional data communication type. Nevertheless, the

procedures to implement the device are not easy where it needs sufficient understanding

on how it operates.

3.3 Phase #2 - Plan The Hardware And Software

 With the Phase 1 has been fully accomplished, the next task is performing the

Phase 2. It can be started by extracting the basic idea of the project based on the Figure

3.2. The first box of the block diagram is the Transducer box which defines a device that

is capable to convert a specific analog signal into a measureable electrical signal. This

project has two types of transducer which are the temperature sensor and the

potentiometer.

3.3.1 Temperature Sensor

 A temperature sensor works by detecting the temperature surrounding and

convert it into an amount of voltage. For this project, the temperature sensor used is the

Precision Centigrade Temperature Sensor, LM35DZ from National Semiconductor. It

generates output in voltage linearly proportional to the Celsius (Centrigrade)

temperature. The main features of LM35DZ are :

• the scale factor is linear + 10.0 mV/ °C

• it does not require any external calibration or trimming and maintains an

accuracy of +/- 0.4 °C at room temperature and +/- 0.8 °C over a range of 0°C to

+1000°C

• it draws only 60 Aμ from its supply and possesses a low self-heating capability.

This equation is used to convert the output voltage into temperature detected:

VCVCeTemperatur out /100*, °=° (3.1)

 12

LM35

1 2

3

VS+ VOUT

G
N

D

(a)

Figure 3.3: LM35DZ Schematic Diagram

 3.3.2 Potentiometer

 Potentiometer also known as a variable resistor typically it’s consist of three

terminals which the track is connected at both ends and a wiper which is the moving

terminal. All the terminals are used and it works likes a voltage divider where it capable

of providing a voltage range from zero up to the maximum of the power supply. As the

wiper is being tuned, what actually happens is that the resistance values (R1 and R2 on

Figure 3.5) are adjusted and produce a new output voltage.

(a)

Figure 3.4: Potentiometer Schematic Diagram

R1

Vout

Vin

R2

0

Figure 3.5: Voltage Divider Circuit

 13

 Moving on the second box of the block diagram is the Signal Processor box

which involve the Analog to Digital Converter 0816 (ADC 0816) Integrated Circuit

(IC), Analog Multiplexer DG406 chip, Hex Inverter (IC 74HC04), Line Driver (IC

74HCT541), D Flip-Flop (IC 74LS74), EIA-232 Driver/Receiver (IC MAX 232),

Microcontroller (IC AT89S52) and Radio Frequency (RF) Module.

 3.3.3 IC ADC 0816

 This device which manufactured from National Semiconductor is an 8 bit ADC

and has sixteen channels multiplexer to detect 16 different analog signals. Based on

Figure 3.6, the address channel is selected via four address pins, A, B, C and D. The

channel will only be activated if only the Expansion Control is set to high (1).

 U5

ADC0816

38
39
40
1
2
3
4
5
6
7
8
9

10
11
12
14

18

19
23

31
30
29
28
27
26
25
24

15

13

17

20

16
32
21
22

37
33
34
35
36

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8
IN9
IN10
IN11
IN12
IN13
IN14
IN15

COMP

REF+
REF-

MSB1
2
3
4
5
6
7

LSB8

MUX OUT

EOC

VCC

GND

START
ALE
OE

CLK

EXPAND
ADDD
ADDC
ADDB
ADDA

Figure 3.6: IC ADC 0816 Pin Configuration

 14

D C B A EC CHANNEL
0 0 0 0 1 IN0
0 0 0 1 1 IN1
0 0 1 0 1 IN2
0 0 1 1 1 IN3
0 1 0 0 1 IN4
0 1 0 1 1 IN5
0 1 1 0 1 IN6
0 1 1 1 1 IN7
1 0 0 0 1 IN8
1 0 0 1 1 IN9
1 0 1 0 1 IN10
1 0 1 1 1 IN11
1 1 0 0 1 IN12
1 1 0 1 1 IN13
1 1 1 0 1 IN14
1 1 1 1 1 IN15

Table 3.1: ADC 0816 Address Selection

To obtain data from ADC 0816, the Address Latch Enable (ALE), Output

Enable (OE) and Start Conversion (SC) need to be initially set to low (0) and End Of

Conversion (EOC) is also needs to be initially set to high (1). Next, an analog channel is

selected by activate the address pins A, B, C and D according Table 3.1. After that, ALE

pin is activated in order to latch in the address. Then, the SC pin is activated to initiate

conversion. After that, EOC is monitor to see whether conversion is done. If it is low

(0), the conversion is done. Finally, EOC and OE are set to high (1) to read the digital

data.

 3.3.4 16 Channel Analog Multiplexer (IC DG406)

 This chip from Maxim is function as a 16 analog multiplexer where it has been

redesigned with new features; guaranteed matching between channel and flatness over

the specified signal range. It is also a low on-resistance muxes where it can perform well

in either direction and guaranteed low charge injection. Moreover, it produce low input

off-leakage current over temperature around below than 5nA at +85°C.

 15

Figure 3.7: IC DG406 Pin Configuration

D C B A EC CHANNEL
0 0 0 0 1 IN0
0 0 0 1 1 IN1
0 0 1 0 1 IN2
0 0 1 1 1 IN3
0 1 0 0 1 IN4
0 1 0 1 1 IN5
0 1 1 0 1 IN6
0 1 1 1 1 IN7
1 0 0 0 1 IN8
1 0 0 1 1 IN9
1 0 1 0 1 IN10
1 0 1 1 1 IN11
1 1 0 0 1 IN12
1 1 0 1 1 IN13
1 1 1 0 1 IN14
1 1 1 1 1 IN15

Table 3.2: DG406 Multiplexer Address Selection

 16

 3.3.5 EIA-232 Drivers/Receivers (IC MAX232)

 This device operates as a line driver (voltage converter) to supply Electronics

Industry Association 232 (EIA-232) voltage level. It converts Recommended Standard

232 (RS232) signal to Transistor-Transistor-Logic (TTL) voltage levels and vice versa

with the power source of +5V. For this chip, it has two sets of line drivers for

transferring and receiving data and it requires four capacitors ranging from 1 to 22 Fμ .

Figure 3.8: IC MAX232 Pin Configuration

 3.3.6 Octal Buffer/Line Driver (IC 74HCT541)

 This chip is designed to work as a buffer or line driver where it is crucial for data

transmission stability. In electronic field, this chip is used to prevent miss identical data

during data transmission due to the instability device. Thus, it helps to reduce error in

the overall system. Apart from that, this chip holds the responsibility to establish the

programming of the Flash – Serial Mode with the conncetion of a microcontroller from

Atmel. Typically the pin involved in this programming is the pin 1.5/MOSI, pin

1.6/MISO and pin 1.7/SCK from the microcontroller part and connected to the bus

outputs of IC 74HCT541. A detail description on this process is explained later in the

circuit elaboration below.

 17

2
3
4
5
6
7
8
9

1
19

18
17
16
15
14
13
12
11

20
10

A1
A2
A3
A4
A5
A6
A7
A8

G1
G2

Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8

VCC
GND

Figure 3.9: IC 74HCT541 Pin Configuration

3.3.7 D Type Positive Edge Flip-Flops (IC 74LS74)

IC 74LS74 is a logic device which has two sets of D flip-flops. In most

application, this chip is commonly used to create latency in a system. Since it has two

sets of D flip-flop, it can be used with a single chip or by combining a number of this

chip for longer latency.

12
119

8

10

7 13

D
CLKQ

Q

PR

GND CL

2
3

5
6

14

4

1

D
CLK

Q
Q

VCC

PR

CL

Figure 3.10: D Flip – Flop Chip Pin Configuration (IC74LS74)

 18

Figure 3.11: D Flip - Flop Timing Diagram

3.3.8 Inverter Gate (IC 74HC04)

This chip performs among the basic logic gates in digital electronics field which

is an inverter. When the input is low (0), the output is high (1); when the input is high

(1), the output is low (0), thereby producing an inverted output pulse.

Figure 3.12: IC 74LS04 Pin Configuration

Figure 3.13: Inverter Gate Symbol

 19

 3.3.9 Microcontroller Chip (IC AT89S52)

 This microcontroller is designed as an 8-bit microcontroller with 8K bytes of in-

system programmable Flash memory. The manufacturer, Atmel has fully consider its

architecture whereby it is compatible with all MCS®-51 products. Thus, all the

instruction set is similar with the Intel 8051 Microcontroller. Apart from that, the user

will find this chip helpful with its feature, in-system programmable where the chip is

easily programmed by attach with the circuit board. With its 256 x 8-bit internal

memory makes the programming more powerful.

9
18
19 29

30

31

40

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

10
11
12
13
14
15
16
17

39
38
37
36
35
34
33
32

RST
XTAL2
XTAL1 PSEN

ALE/PROG

EA/VPP

VCC

P1.0/T2
P1.1/T2-EX
P1.2
P1.3
P1.4/SS
P1.5/MOSI
P1.6/MISO
P1.7/SCK

P2.0/A8
P2.1/A9

P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15

P3.0/RXD
P3.1/TXD

P3.2/INTO
P3.3/INT1

P3.4/TO
P3.5/T1

P3.6/WR
P3.7/RD

P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7

Figure 3.14: IC AT89S52 Pin Configuration

 20

 3.3.10 Radio Frequency (RF) Module TLP/RLP 434A

 RF transmitter module, TLP 434A and RF receiver module, RLP 434A from

Laipac Technology is designed to suit for any wireless applications. It is capable to

reach 500ft of range in open area. The typical use frequency is 433.9MHz while

418Mhz and 315Mhz are alternative frequencies. This module used Amplitude Shift

Keying (ASK) as the data communication method.

The main feature for the transmitter is that it is based on SAW resonator and

capable to accept both linear and digital inputs making the RF development become

easier. For the pin description, pin 1 is assigned to Ground (GND), pin 2 is the Data In

pin, pin 3 is the VCC pin and the pin 4 is the Antenna (RF Output) pin. As for the

receiver, it has 3μV, -103dbm and the typical current is only 3.5mA for 5V operation.

As for the pin configuration, pin 1, pin 6 and pin 7 is assigned to GND, pin 2 is the

Digital Data Output pin, pin 3 is the Linear Output pin, pin 4 and pin 5 is the VCC pin

and pin 8 is the Antenna pin.

Figure 3.15: RLP 434 SAW Based Receiver Part

Figure 3.16: TLP 434A Ultra Small Transmitter Part

 21

START

End

Signals Detection At
Transducer

Obtain Digital Data
At ADC

Activate ADC

Transmit Data Bit By Bit Via
Wireless Communication

Terminate

Send Data To Microcontroller

YES

NO

Figure 3.17: Transmitter Part Flow Chart

 22

 Start

End

Data Transfer To PC Using RS232
Protocol

Terminate

YES

NO

Receive Data Bit By Bit
Via Wireless

Communication

FIGURE 3.18: Receiver Part Flow Chart

 As the specifications and features of the major components above are being

studied, the next step is to design the system. For a wireless communication to be

establish, a transmitter and a receiver needs to be develop. Thus, Figure 3.17 and Figure

3.18 are the flow chart for the transmitter and the receiver part of this project

respectively.

 The last box of the block diagram is the Display box where it focus on the

interface between user and the project. As the project title implies, the data obtained

based on the analog signals needs to be monitor frequently. The most basic display

panel is the PC where the data is being display by using a software as the GUI.

Therefore, this project used the Visual Basic® 6.0 software from Microsoft® Corporation

as the GUI. The flow chart of this task is shown at Figure 3.19. The data is display and

monitor in the form of graph.

 23

Start

End

Display Data In Graphical Form

Terminate

YES

NO

Receive Data Via Serial
RS 232 Communication

Open Communication Port

Configure Communication Port

Figure 3.19: GUI Flow Chart

 Based on the Figure 3.19, the Serial RS 232 Communication is used to interface

the microcontroller board with the PC. In this project, it is the simplex communication

where by the data is transmitted in one way from the microcontroller board to the PC.

For this purpose, a DB9 connector with cable is required which compatible with the PC

communication port. It involved pin 2 for receive data, pin 3 for transmitted data and pin

5 for ground. The connection of pin 2 and pin 3 are switched between the PC

communication port and the microcontroller port in order to establish a communication,

one side will transmit and another side will receive the data. Figure 3.20 illustrated this

statement.

 24

00

CABLE

MICROCONTROLLER PORT

5
9
4
8
3
7
2
6
1

PC COMM PORT

5
9
4
8
3
7
2
6
1

Figure 3.20: Serial RS232 Configuration

3.4 Phase #3 - Design, Implement And Test The Hardware

 Referring the flow charts from Phase 2, the hardware development for this

project can be done. To operate the AT89S52 microcontroller, the 74HCT541 needs to

be designed as an In-System Flash microcontroller programmer. The design is based on

the circuit of the In System Programmable (ISP) Flash Microcontroller Programmer

from Version 3.0 by Mohammad Asim Khan which is shown at Figure 3.22. Based on

that figure, 74HCT541 chip works as an isolator and buffer the parallel port signal.

Apart from the circuit diagram, the software for read and write the desired program into

the microcontroller via Serial Programming Interface (SPI) is also available for this

version. This can be seen at Figure 3.21.

Figure 3.21: ISP Flash Microcontroller Programmer Version 3.0a Software

 25

Figure 3.22: ISP Flash Microcontroller Programmer Version 3.0 Circuit Diagram

 To download the program from PC to microcontroller, the file must be in HEX

file and it involved a cable that has a DB25 connector port (parallel port) to plug into the

PC parallel port. Only 8 pins are used which is pin 5, 6, 7, 9, 10, 18 and pin 2 and 25 are

short for auto hardware detection. As for the other side, DB9 connector port is required

to plug in with the microcontroller board which used the pin 4, 5, 6, 7,8 and 9. Figure

3.23 illustrate the loader cable pin configuration.

13

Figure 3.23: Loader Cable Pin Configuration

TO PIN9

TO PIN6

TO PIN10TO PIN8

TO PIN7TO PIN7

TO PIN5
TO PIN6

TO PIN18

PC PORT

25
12
24
11
23
10
22
9
21
8
20
7
19
6
18
5
17
4
16
3
15
2
14

TO PIN9

1

MICROCONTROLLER PORT

5
9
4
8
3
7
2
6

TO PIN5

TO PIN18

1

 26

 In order to enable ADC0816 and function in synchronize with AT89S52,

74LS74 chip is needed to supply clock pulse for ADC0816. This is done by tapping

from the crystal of the microcontroller. A typical D Flip-Flop 74LS74 chip will divide

the frequency by 2 if its Q connected with the D input. Based on the ADC0816

datasheet, the typical operating frequency is approximately 640kHz at 5 Volts. For the

crystal frequency is 11.0592Mhz. Thus,

As a result, 4 D flip – flops are required to obtain the operating frequency of

ADC0816 as shown at Figure 3.24.

Figure 3.24: ADC0816 With External Clock

kHzMHz

MHzMHz

MHzMHz

MHzMHz

2.691
2

3824.1

3824.1
2

7648.2

7648.2
2

5296.5

5296.5
2

0592.11

=

=

=

=

IN6

0

P2.2

P2.3

IN2

P3.6

IN3

ADC0816

38
39
40

1
2
3
4
5
6
7
8
9

10
11
12
14

18

19
23

31
30
29
28
27
26
25
24

15

13

17

20

16
32
21
22

37
33
34
35
36

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8
IN9
IN10
IN11
IN12
IN13
IN14
IN15

COMP

REF+
REF-

MSB1
2
3
4
5
6
7

LSB8

MUX OUT

EOC

VCC

GND

START
ALE
OE

CLK

EXPAND
ADDD
ADDC
ADDB
ADDA

P2.5

IN14

U15A

74LS74

2

3

5

6

14
7

D

CLK

Q

Q

V
C

C
G

N
D

VCC(uC)

IN15

P0.6

P0.4

0

P2.2

P0.6

P3.4

VCC

P3.3

P2.5
P2.6

R3 4.7K

C13 33p P1.7

P0.3

P2.1

0

P0.2

VCC P2.4

P3.1

P1.6

VCC

P1.0

Y1

VCC

0

IN0

C19
C

IN13

IN4

U16B

74LS74

12

11

9

8

14
7

D

CLK

Q

Q

V
C

C
G

N
D

P2.1

CLK P3.7

AT89S52

9
18
19

20

29

30

31

40

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

10
11
12
13
14
15
16
17

39
38
37
36
35
34
33
32

RST
XTAL2
XTAL1

G
N

D

PSEN

ALE/PROG

EA/VPP

VCC

P1.0/T2
P1.1/T2-EX
P1.2
P1.3
P1.4/SS
P1.5/MOSI
P1.6/MISO
P1.7/SCK

P2.0/A8
P2.1/A9

P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15

P3.0/RXD
P3.1/TXD

P3.2/INTO
P3.3/INT1

P3.4/TO
P3.5/T1

P3.6/WR
P3.7/RD

P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7

P0.3

P1.3

0

P0.2

IN7

U16A

74LS74

2

3

5

6

14
7

D

CLK

Q

Q

V
C

C
G

N
D

D

P2.0

P2.0

C14

33p

P0.1

CLK

IN1

P2.3

P3.2

P0.7

P2.6

IN8

IN11
IN10

0

0

P0.0

EXPAND

R4 4.7K

P0.5

IN9

P0.0

P0.5

P2.7

P0.4

RST

P3.5P1.5

P1.2

0

IN12
P1.4

P2.4

P0.7

VCC

VCC(5)

P1.1

P0.1

U15B

74LS74

12

11

9

8

14
7

D

CLK

Q

Q

V
C

C
G

N
D

P2.7

P3.0

IN5

 27

To enhance this project, addition analog channels are designed to supply more

data for monitoring purpose. As the ADC0816 has 16 analog channels, this project is

added with a DG406 analog multiplexer that has 16 analog channels. Thus, a total of 32

analog channels are available for this project and any channel can be selected at one

time. To implement these 32 analog channels, a 74HC04 chip is needed as a switch to

enable DG406 and disable ADC0816 or vice versa at one time. This chip is control by

one of any port signal from the microcontroller where the signal for EC at ADC0816 has

to be low (0) to enable DG406. This is done by supplying signal to the Enable (EN) pin

at DG406. Appendix list all the address accessible for this project.

Figure 3.25: 32 Analog Channels Circuit Diagram

 This project will not be function without the existence of the AT89S52

Microcontroller. It works as the brain for the entire project where it generates signals to

activate and deactivate which device to be enable. Moreover, it is also the medium of

temporary data storage for the wireless communication. As the digital data is obtained, it

will then be send to the transmitter RF module for wireless data transmission.

U14A74HC04

1
2

14
7

VCC

IN1

IN15

IN12

IN4

IN24 IN14

IN19
IN18

IN9

IN26

IN6

IN21

VCCIN16
U13

DG406

12

14
15
16
17

18

28

19
20
21
22
23
24
25
26
11
10
9
8
7
6
5
4

1

27

G
N

D

A3
A2
A1
A0

EN

D

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16

V+

V
-

0

0

IN8

0
IN29

IN23

IN31

IN20

VCC

IN22

IN2

IN7

IN13

PX.X

IN27

IN30

IN28

IN25

IN17

IN0
U5

ADC0816

3831
39
40
1
2
3
4
5
6
7
8
9
10
11
12
14

18

19
23

30
29
28
27
26
25
24

15

13

17

20

16
32
21
22

37
33
34
35
36

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8
IN9

IN10
IN11
IN12
IN13
IN14
IN15

COMP

REF+
REF-

MSB1
2
3
4
5
6
7
LSB8

MUX OUT

EOC

VCC

GND

START
ALE
OE
CLK

EXPAND
ADDD
ADDC
ADDB
ADDA

IN3

IN11

IN5

IN10

 28

 RST(S)

Figure 3.26: The Circuit Switches

 At the receiver board, it can seen it has two toggle switches and one push button

which the transmitter board is also has one. These parts are important as it acts as the

initial procedure for the board’s loading and operation. For the board to perform as a

loader, the toggle switch 1 must be toggle to RST(L) and toggle switch 2 must be to

toggle to VCC(L). As a result; the pin VPPEA / at pin 31 of the IC AT89S52 is being

attached with GND whereby it enables the microcontroller to fetch code from external

program memory (Asim Khan’s Software) that starts at 0000H up to FFFFH.

Meanwhile, this will also create a connection between pin 1.5(MOSI), pin 1.6(MISO)

and pin1.7(SCK) via IC 74HCT541 which enable the serial programming. Moreover,

PSEN is supplied with low (0) signal where it read strobe to external program memory

and the PROG is also supplied with low (0) signal which produce the program pulse

input for the microcontroller. After done the programming, the toggle switch 1 is toggle

to RST(S) and toggle switch 2 is toggle to VCC(5) where it results the programming

session is over and PROG and PSEN is supplied with high (1) signal and the push

button can be used to reset the microcontroller during any program is running.

VCC(uC)

R1
6.8k

0

VCC

D2
LED

VCC(5)

PUSH BUTTON

VCC(5)

TOGGLE SWITCH 2

2
1

3 VCC(L)

1
2

3

TOGGLE SWITCH 1

VCC(5)

RST

C17
CAP

R18
220

0

RST(L)

RST(S)

29

The complete schematic diagram for both transmitter and receiver part are

shown at Figure 3.28 and Figure 3.29 respectively.

 In order any electronic circuit to be operate, a power source must be supply. So,

this project utilize two different power supplies, a fix 5V or a 12V. If the board is

supplied with a 12V power, then LM7805 will be function as a voltage regulator where

it convert the incoming power into a fix 5V power. As a result, the board is capable to

be activate with any source power. For safer conversion, the LM7805 needs to be

attached with a heatsink in order to absorb and dissipate the heat produce by the power

conversion.

Figure 3.27: Power Supply Circuit

0

LM7805/TO
1

3

2
VIN

G
N

D

VOUT

VCC

C2
100n C20

10uF 50V
D1
LED

12V

1
2

R2

2205V

1
2 C18

10uF 50V

 30

Figure 3.28: The Overall Transmitter Part Circuit

IN31

IN3

0

P0.0
U1

AT89S52

9
18
19

20

29

30

31

40

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

10
11
12
13
14
15
16
17

39
38
37
36
35
34
33
32

RST
XTAL2
XTAL1

G
N

D

PSEN

ALE/PROG

EA/VPP

VCC

P1.0/T2
P1.1/T2-EX
P1.2
P1.3
P1.4/SS
P1.5/MOSI
P1.6/MISO
P1.7/SCK

P2.0/A8
P2.1/A9

P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15

P3.0/RXD
P3.1/TXD

P3.2/INTO
P3.3/INT1

P3.4/TO
P3.5/T1

P3.6/WR
P3.7/RD

P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7

IN9

D

VCC

CLK

P0.2

U15A

74LS74

2

3

5

6

14
7

D

CLK

Q

Q

V
C

C
G

N
D

P2.0

P0.1

IN17

0

P1.2

P0.5

IN18

IN30

IN13

P0.5

C20
10uF 50V

P0.0

IN24

U16B

74LS74

12

11

9

8

14
7

D

CLK

Q

Q

V
C

C
G

N
D

0

P3.5

TP2

TEST POINT
1

IN26

J4

CON8

1
2
3
4
5
6
7
8

P3.2
IN12

P0.6

VCC

IN29

R1
6.8k

P2.1

U15B

74LS74

12

11

9

8

14
7

D

CLK

Q

Q

V
C

C
G

N
D

P1.6

R2

220

VCC

IN9

P1.1

0

0

P2.6

P3.7

U14A

74HC04

1
2

14
7

P1.0

P2.2

P0.4

VCC

IN2

P0.3

U16A

74LS74

2

3

5

6

14
7

D

CLK

Q

Q

V
C

C
G

N
D

P2.3

P0.6

IN0U5

ADC0816

38
39
40
1
2
3
4
5
6
7
8
9

10
11
12
14

18

19
23

31
30
29
28
27
26
25
24

15

13

17

20

16
32
21
22

37
33
34
35
36

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8
IN9
IN10
IN11
IN12
IN13
IN14
IN15

COMP

REF+
REF-

MSB1
2
3
4
5
6
7

LSB8

MUX OUT

EOC

VCC

GND

START
ALE
OE

CLK

EXPAND
ADDD
ADDC
ADDB
ADDA

0

EXPAND

IN27

R3 4.7K

IN23

P0.7
IN6

IN22

IN16

J9

CON8

1
2
3
4
5
6
7
8

P0.1

IN11

IN20

IN19

IN25

P1.5

U13

DG406

12

14
15
16
17

18

28

19
20
21
22
23
24
25
26
11
10
9
8
7
6
5
4

1
27

G
N

D

A3
A2
A1
A0

EN

D

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16

V+
V-

P2.0

IN21

IN25

IN7

0

P2.7

P2.1

U4
LM7805/TO

1

3

2
VIN

G
N

D

VOUT

0

VCC(5)

IN18

IN4

IN10

VCC

P2.4

P0.0

C14

33p

J1

CON4

1
2
3
4

P2.6

IN4

C17
CAP

0

P0.5

IN22

P0.3

J7

CON2

1
2

P0.4

IN8

D1
LED

IN1

0

P2.2

IN28

IN7

IN17

P3.3

IN23

IN16

C19
C

0

VCC

TP4

TEST POINT
1

IN3

IN26

IN10

IN5

RST

P0.2

IN0

P3.1

P2.7

P0.4

P0.1

VCC

P1.3

IN21

C18
10uF 50V

IN15

IN28

IN31

D

C2
100n

SW1

IN30

IN1

P1.7

0

J3

CON8

1
2
3
4
5
6
7
8

J5

CON8

1
2
3
4
5
6
7
8

CLK

IN2

IN24

TP1

TEST POINT
1

IN13

VCC(5)

P1.1

C13 33p

P2.5

VCC(uC)

P1.0

IN11

VCC

IN5

RST

IN20

J6

CON8

1
2
3
4
5
6
7
8

P2.4

P0.7

0

IN19

IN8

P2.4

VCC

P0.2

P2.5

P2.7

P0.7

P3.0

IN6
P0.6

P3.4

P1.0

EXPAND

Y1

IN12

IN27

0

P2.3

P1.4

IN29

R4 4.7K

IN14

VCC(5)

J8

CON2
1
2

P2.5

TP3

TEST POINT
1

P2.6

P0.3

IN15

P3.6
IN14

J2

CON8

1
2
3
4
5
6
7
8

31

Figure 3.29: The Overall Receiver Part Circuit

P2.2

RS

R5 4.7k

P0.7

RX

J2

CON8

1
2
3
4
5
6
7
8

C20
10uF 50V

P3.3

P2.2

P2.5

P3.5

U2

MAX232

13
8

11
10

1
3
4
5
2
6

12
9
14
7

16
15

R1IN
R2IN
T1IN
T2IN

C+
C1-
C2+
C2-
V+
V-

R1OUT
R2OUT
T1OUT
T2OUT

V
C

C
G

N
D

TX

SW3

SW SPDT

2
1

3

0

P0.2

J7

CON2

1
2

P1.7

J11

CON4

1
2
3
4

P3.0

SW2

SW SPDT

2
1

3

P3.0

0

P3.7

R18
220

JP111 2

C18
10uF 50V

P0.2

E1

R2

220

U5
LM7805C/TO

13

2

INOUT

G
N

D

0

P0.0 P1.6

P2.1

VCC(uC)

P1.1

P2.6

P0.3

R8 4.7k

R15 1k

VCC(L)

RS

R11 1k

0

J10

CON4

1
2
3
4

P1.3

P2.3

RX

VCC

R7 4.7k

0

0

P3.7

C17
CAP

C13 33p

P1.4

TX

C14

33p

J4

CON8

1
2
3
4
5
6
7
8

RS

R17 1k

P1.2

P1.1

P2.0

P3.6

P2.3

BE

TP2

TEST POINT
1

C19
C

TP1

TEST POINT
1

P3.2

CK

P3.3

0

P0.6

0

TP4

TEST POINT
1

P2.0

P1.7

VCC(5)

E0

P2.0

RST(S)

VCC

R6 4.7k

P1.5

E0

P0.1

P0.6
VCC

P0.5
J1

CON8

1
2
3
4
5
6
7
8

P1.4

RST

CK

VCC(L)

RST

VCC

J8

CON2
1
2

P1.3

P0.4 RST(L)

0

J3

CON8

1
2
3
4
5
6
7
8

C22
4.7uF

P3.1

RST(L)

Y1

R1
6.8k

VCC

P0.4

P3.5

P0.1
P0.0

P2.1

R16 1k
E0

CK

R12 1k

RST(S)

P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

C23
4.7uF

P3.4

VCC(5)

P2.6

P3.2

P1.5

0

P2.7

D2
LED

R9 1k

P2.4
P2.5

P1.6

JP91 2U1

AT89S52

9
18
19

20

29

30

31

40

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

10
11
12
13
14
15
16
17

39
38
37
36
35
34
33
32

RST
XTAL2
XTAL1

G
N

D

PSEN

ALE/PROG

EA/VPP

VCC

P1.0/T2
P1.1/T2-EX
P1.2
P1.3
P1.4/SS
P1.5/MOSI
P1.6/MISO
P1.7/SCK

P2.0/A8
P2.1/A9

P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15

P3.0/RXD
P3.1/TXD

P3.2/INTO
P3.3/INT1

P3.4/TO
P3.5/T1

P3.6/WR
P3.7/RD

P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7

0

C16
0.1u

P3.4

P1.6

P0.3

JP101 2

P3.1

VCC(5)

P3.0

C24
4.7uF

VCC(5)

P1.7

P1.5

BE

BE

P0.7

P2.4

R14 1k

R3 4.7K

R4 4.7K

P3.6

0

VCC(uC)

U3

74HCT541

20
10

1
19
2
3
4
5
6
7
8
9

18
17
16
15
14
13
12
11

V
C

C
G

N
D

OE1
OE2
A0
A1
A2
A3
A4
A5
A6
A7

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

C2
100n

VCC(5)

0

P1.0 P1.2

E1

P1.0

P0.5

SW1

P2.7

VCC

TP3

TEST POINT
1

R10 1k

C21
4.7uF

P3.1

R13 1k

D1
LED

 32

3.4.1 Schematic Circuit Design

 The transmitter and receiver circuit design is very crucial in this project to

increase reliability and simplicity. Initially, a study on the existing ISP board is done in

order to get a better view of the circuit’s function. With the information gained, the

circuit design is started by drawing the schematic on the OrCAD® Capture CIS

software. As the drawings are done, the next step is to identify the Printed Circuit Board

(PCB) footprint that is best fit with all the components used. It is very important to have

the exact and correct PCB footprint in order to prevent error during the circuit

construction. To identify the desired PCB footprint, choose OrCAD® Layout and click

Tools>Library Manager. It is much easier if the components are already in hand so that

it can be used to select its PCB footprint exactly. The list of PCB footprints used in this

project can be refer on Appendix A. As the final touch for the schematic drawing, the

procedures on Figure 3.30 have to be done. This is for the initial step for PCB layout.

Annotate

Click Tools>Annotate

Function – to update the part reference for nestlisting preparation

Design Rules Check (DRC)

Click Tools>Design Rules Check

Function – to check multiple parts of similar reference or invalid package or nets

Netlist

Click Tools>Create Netlist

Function – to create netlist for PCB layout

Figure 3.30: Final procedures for schematic drawing

 33

3.4.2 PCB Fabrication

 This project used OrCAD Layout software to make the PCB which is a double

layer board. Since both layer are used, thus much consideration must be taken on its size

of trace, space width, via (connection between top layer and bottom layer) and size of

hole which will be drill. The procedure starts by choosing OrCAD Layout program and

load the netlist created from OrCAD Capture CIS. As no error occurred during

AutoECO process, the layout design can be started by clicking the Component Tool at

the control panel. This will enable the components to be arranged as desired design.

Figure 3.31: The Receiver Layout

 34

The arrangement is crucial where the components need to be in the right place to

reduce the wire path in order to avoid stressful fabrication. After the arrangement had

done, the next step is to route the board. It is best done by using SmartRoute Tool at the

Layout tool. The advantage of this tool is that it reduces the number of via and create

better route compared to Autoroute Board at the Auto command of Layout. The

transmitter layout and the receiver layout are displayed on Figure 3.31 and Figure 3.32

respectively.

Figure 3.32: The Transmitter Layout

 35

 As for the Liquid Crystal Display (LCD) board, the fabrication method is differs

compared to the transceiver board. The method used is self-fabrication where it can be

done in our own house. The first step is to have the layout being go through the Run

Post Processor process and then duplicate it by photocopy on an Overhead Projector

(OHP) paper. Next, the layout is being ironed on an empty PCB board until all the

layout is approximately transferred to the PCB. Next, the PCB will then go through the

etching process where acid is used to discard the unwanted copper. The result is the

desired layout and it is proceed by the drilling holes and soldering the components.

Finally, the PCB is being coated with a clear layer to avoid rust on the copper.

Figure 3.33: LCD Schematic Diagram

Figure 3.34: LCD PCB Layout

GND

D3

D4

VCC
GND

RS

D5

GND
J6

CON6

1
2
3
4
5
6

TP3

TEST_POINT

1

RW
E

0

D4

D6

D3

RW

D3
D6

E

D2
J5

CON8

1
2
3
4
5
6
7
8

TP2

TEST_POINT

1

VCC

D5D5

E

D7

VEE

D0

R1
220

VCC VCC

J7

CON2

1
2

R2
1K

RW

J2

CON14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

D0

D1

TP1

TEST_POINT

1

D4

0

D6
D7

D0

D1
LED

GND

VEE

D1

GND

D2
D7

J1

CON16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

TP4

TEST_POINT

VEE

D2

RS

D1

RS
1

 36

3.5 Phase #4- Design, Develop And Test The Software

 In this phase, the main task is to develop the software part that will run the

project entirely. It is done part by part in order to detect any error or malfunction along

with the hardware part which has completed. The GUI development used the Visual

Basic® 6.0 software while the programming code is done in C language via Keil

MicroVision®3 software trial version.

3.5.1 The GUI Development

The GUI is one of the important part for this project as it display the data from

microcontroller for data monitoring and analysis. The design template has to be user

friendly for best usage. For this project, the main objective is to display data received in

graphical form. As a transducer detects and translate an analog signal, the data will go

through a conversion at the ADC and become a digital data format. This digital data is

converted in an eight bit data. This data will be send using the wireless data

transmission between the transceiver board. Next, it will reach a PC and being

manipulated to be display in graphical form with the help of Visual Basic® 6.0 software.

Time Elapsed

Display Data

On/Off Grid

Exit Program

Reset Data
Start/Hold

Setting Comm Port

Figure 3.35: GUI Monitoring System Panel

 37

Since the data used the serial RS232 communication, therefore an initialization

needs to be done which are the baud rate,data bits, parity, stop bit and the COM port at

the PC. The baud rate is the number of signal changes per second or transition speed

between Mark (negative) and Space (positive) which range from 110 to 19200, data bits

is the length of data in bit which has one Least Significant Bit (LSB) and one Most

Significant Bit (MSB), the parity bit is an optional bit mainly for bit error checking. It

can be odd, even, none, Mark and Space. Stop bit is used to frame up the data bits and

usually combined with the start bit. These bits are always represented by a negative

voltage and can be 1, 1.5 and 2 stop bits. And for the COM port is the selection of the

available COM port at the PC. Most PC has 2 COM port which serial RS232

communication compatible. The commonly used setting to establish a serial RS232

communication is 9600 baud rate, none parity, 8 data bits, 1 stop bit and COM port 1.

This can be done by clicking ‘settings’ at the GUI panel.

Figure 3.36: Bit Format

Click Here

Figure 3.37: Serial RS232 Initialization at the GUI

 38

As this project relates with data collection, thus the data obtained from the

microcontroller needs to be collected and saved. This can be done by using the GUI

monitoring system where it automatically saves the data received in a notepad. The data

being saved is the date and time during the data being collected and data value itself.

Figure 3.38 represents this statement. The overall source code for GUI monitoring

system can be referred to Appendix A

Data

Time

Date

Figure 3.38: Data Obtained Being Saved In A Notepad

3.5.2 Microcontroller Testing

As the boards are being fabricated, a test procedure on the board should be

made. This is to identify if any error or malfunction is detected during its operation. The

test is by checking all ports of the microcontroller whether it can perform as an input

and output (IO) port. The program that will executed is to toggle the test port with

high(1) and low(0).

#include <reg51.h>

sbit mybit = P2^4; //set P2.4 as mybit

void time(unsigned char delay) /****** DELAY ******/

{

unsigned char x; //set x as unsigned character

 for (x=0;x<delay;x++) //make loop as x value

 39

{

 TMOD = 0x20; //use Timer 1, 8 - bit auto reload

 TH1=0xFD; //Set baud rate to 9600

 SCON=0x50; //use serial mode 1,8-bit data,1 stop bit,1 start bit

 TR1=1; //start timer

 TH0 = 0x4c; //50ms delay

 TL0 = 0x00; //set TL0 as 0

 TF0 = 0; //Clear rollover flag

 TR0 = 1; //on timer

 while (TF0 == 0); //monitor TF0

 TR0 = 0; //off timer

}

}

void main () /*****main****/

{

while(1) //repeat forever

{

 mybit =0; //toggle mybit to 0

 time(100); // call delay 100 times

 mybit =1; //toggle my bit to 1

 time(100); // call delay 100 times

}

}

 Referring to the source code above,a timer is configured to provide a specific

delay time by simply setting the starting count and then waiting for the TFx to indicate a

rollover-the end of the time delay. The numbers loaded into the counters determine the

time delay for one time through the loop. The frequency driving the counters is the

system clock divided, so the time per count is obtained. The counters count up from the

preset count to 0xFFFF before rolling over and setting the timer flag. Therefore, the

counter preload numbers must be subtracted from 0x10000.

 40

To generate a 50ms delay via timer, the calculation below is done.

Counter clock frequency kHzMHzksystemcloc 6.921
12

0592.11
12

===

Time per clock count s
kHzyckfrequenccounterclo

μ085.1
6.921
11

===

Counts for the delay 080,46
085.1
50

===
s

ms
ckcounttimeperclo

delaytime
μ

Preload count = 0x10000 – counts for the delay

 = 65,536 – 46,080 = 19,456 = 0x4C00

3.5.3 Analog to Digital Converter Testing

This testing is another important part for this project as it involved the brain of

the project, the AT89S52 chip. The task is to generate signals from AT89S52 chip to

activate the ADC and it will convert the data from the analog channel with address

0000.

#include <reg51.h>

sbit ADDR_A= P0^0; //set Port0.0 as Address A

sbit ADDR_B= P0^1; //set Port0.1 as Address B

sbit ADDR_C= P0^2; //set Port0.2 as Address C

sbit ADDR_D= P0^3; //set Port0.3 as Address D

sbit OE = P0^4; //set Port0.4 as OE

sbit EOC = P0^5; //set Port0.5 as EOC

sbit SC = P0^6; //set Port0.6 as SC

sbit ALE = P0^7; //set Port0.7 as ALE

sfr MYDATA = 0xA0; //declare SFR at Port2 = 0xA0

void time(unsigned char delay);

void main () /****** Main ******/

{

 41

unsigned char value; //define value as unsigned character

P2 = 0xFF; // set as input

SC = 0; //disable SC

ALE = 0; //enable ALE

OE = 0; //disable OE

EOC=1; //activate EOC

 while(1) //repeat forever

{

 ADDR_D = 0; //set Address D = 0

 ADDR_C = 0; //set Address C = 0

 ADDR_B = 0; //set Address B = 0

 ADDR_A = 0; //set Address A = 0

 time(1); //set delay once

 ALE = 1; //enable latch address

 time(1); //set delay once

 SC = 1; // ready to convert

 time(10); //set delay 10 times

 ALE = 0; //disable ALE

 SC = 0; //end of intial signal

 while(EOC==0); //monitor conversion period

 while(EOC==1); //monitor converted data done

 OE = 1; //ready to read data

 time(10); //set delay 10 times

 value = MYDATA ; //data transfer to P2

 OE = 0; //disable OE

}

}

void time(unsigned char delay) /****** DELAY ******/

{

unsigned char x; //set x as unsigned character

 for (x=0;x<delay;x++) //make loop as x value

 42

{

 TMOD = 0x20; //use Timer 1, 8 - bit auto reload

 TH1=0xFD; //Set baud rate to 9600

 SCON=0x50; //use serial mode 1,8-bit data,1 stop bit,1 start bit

 TR1=1; //start timer

 TH0 = 0x4c; //50ms delay

 TL0 = 0x00; //set TL0 as 0

 TF0 = 0; //Clear rollover flag

 TR0 = 1; //on timer

 while (TF0 == 0); //monitor TF0

 TR0 = 0; //off timer

}

}

 To verify the digital output from ADC, some calculation needs to be done. Since

ADC 0816 is an 8 bit resolution, so it has 256 step resolutions where each step size is

the smallest change that can be discerned by the ADC. Therefore, the equation below

must be used:

Stepsize
VinDout = (3.2)

where Dout = digital data output (in decimal), Vin = analog input voltage and step size

(resolution) = Vref/256

 Let say the Vref is 2.56V, thus the step size is 2.56V/256 = 10mV. Next, we

used the 10kΩ potentiometer as the transducer. If it is tuned half of the value, it produce

the voltage; VVx
k
kVin 25.15

10
5.2

=
Ω
Ω

= . Referring the equation 3.2, the estimated Dout is

bmV
VDout 01111101125

10
25.1

===

 43

As a result, the value of 125 in decimal or 01111101b should be display at the

digital output. To make a clear view, a LED is attached on each the digital output pin of

ADC0816 as in Figure X. Therefore, the LED will on and off based on that Figure 3.39.

ON

LSB8

OFF

7

ON

5

TO ADC 0816 OUTPUT PIN

ON

3

0

ON

6

ON

2

ON

4

OFF

MSB1

Figure 3.39: Output Verification Using LED

 3.5.4 RF Testing Module (RLP434A & TLP434A) And Serial Communication

 RF module acts an important aspect in this project. The test includes both

hardware and software part. The test is to send low (0) and high (1) signal from port 2.0

of AT89S52 chip to the RF transmitter part continuously. After that, the signal will be

transmitted wirelessly to the RF receiver part. To verify the signal transmission, a Light

Emitting Diode (LED) is located at the Data In pin at the RF transmitter part and at the

Data Out pin at the receiver part. As for the serial communication testing, MAX232 chip

is used as a line driver which send the data received to the PC and display on the

HyperTerminal© or by using the GUI.

 44

 1
2
3
4
5
6
7
8

Figure 3.40: RF Module And Serial Communication Test Circuit

#include <reg51.h>

sbit mybit = P2^0; //Declare P2.0

void main () /****** MAIN ******/

{

 while(1) { //Repeat forever

 mybit =0; //Toggle P2.0 to low

 time(100);

 SBUF=mybit; //Send data to SBUF register

 while(TI==0); //wait until transmitted

 TI=0;

 mybit =1; //Toggle P.0 to high

 time(100);

 SBUF=mybit;

 while(TI==0);

 TI=0;}

}

void time(unsigned char delay) /****** DELAY ******/

RX

0

RX

0

P2.0

T
LP

434A

1
2
3
4

LED

C23
4.7uF

VCC

C21
4.7uF

0

R
LP

43
4A

C22
4.7uF

LED

0

VCC

P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

U2

MAX232

13
8

11
10

1
3
4
5
2
6

12
9
14
7

16
15

R1IN
R2IN
T1IN
T2IN

C+
C1-
C2+
C2-
V+
V-

R1OUT
R2OUT
T1OUT
T2OUT

V
C

C
G

N
D

VCC

C24
4.7uF

VCC(5)

0

 45

{ unsigned char x;

 for (x=0;x<delay;x++){

 TMOD = 0x20; //use Timer 1, 8 - bit auto reload

 TH1=0xFD; //Set baud rate to 9600

 SCON=0x50; //use serial mode 1,8-bit data,1 stop bit,1 start bit

 TR1=1; //start timer

 TH0 = 0x4c; //50ms delay

 TL0 = 0x00; //set TL0 to 0

 TF0 = 0; //Clear rollover flag

 TR0 = 1; //on timer

 while (TF0 == 0); //monitor TF0

 TR0 = 0;} //off timer

}

 3.5.5 LCD Display Testing

 In this project, the LCD is used to display the readings from ADC. To activate

the LCD, it must be initialize to set the display for an operating mode to fit the project.

For testing purpose, the LCD is initialized to display the word ‘TEST’ at the first line

and increment to the right.

#include <reg51.h>

sfr ldata = 0xA0; //set data from P2

sbit rs = P3^5; //set Port3.5 as RS

sbit rw = P3^6; //set Port3.6 as RW

sbit en = P3^7; //set Port3.7 as EN

void lcdcmd(unsigned char value);

void lcddata(unsigned char value);

void time(unsigned char delay);

 46

void main() /****main****/

{

lcdcmd(0x38); // 2lines and 5x7 matrix

time(5); //set delay 5 times

lcdcmd(0x0E); //display on,cursor blinking

time(5); //set delay 5 times

lcdcmd(0x01); //clear display screen

time(5); //set delay 5 times

lcdcmd(0x06); //increment cursor to the right

time(5); //set delay 5 times

lcdcmd(0x80); //force cursor to blink at 1st line

time(5); //set delay 5 times

lcddata('T'); //send ASCII T

time(100); //set delay 100 times

lcddata('E'); //send ASCII E

time(100); //set delay 100 times

lcddata('S'); //send ASCII S

time(100); //set delay 100 times

lcddata('T'); //send ASCII T

time(100); //set delay 100 times

}

void lcdcmd(unsigned char value) /******Command Subroutine******/

{

ldata = value; //send ASCII data

rs = 0; //set RS as 0

rw = 0; //set RW as 0

en = 1; //set EN as 1

time(5); //set delay 5 times

en = 0; //set EN as 0

return;

}

 47

void lcddata(unsigned char value) /******Data Subroutine******/

{

ldata = value; //send ASCII data

rs = 1; //set RS as 1

rw = 0; //set RW as 0

en = 1; //set EN as 1

time(10); //set delay 10 times

en = 0; //set EN as 0

return;

}

void time(unsigned char delay) /****** DELAY ******/

{

unsigned char x; //set x as unsigned character

 for (x=0;x<delay;x++) //make loop as x value

{

 TMOD = 0x20; //use Timer 1, 8 - bit auto reload

 TH1=0xFD; //Set baud rate to 9600

 SCON=0x50; //use serial mode 1,8-bit data,1 stop bit,1 start bit

 TR1=1; //start timer

 TH0 = 0x4c; //50ms delay

 TL0 = 0x00; //set TL0 as 0

 TF0 = 0; //Clear rollover flag

 TR0 = 1; //on timer

 while (TF0 == 0); //monitor TF0

 TR0 = 0;} //off timer

}

}

 48

3.6 Phase #5 - Test the overall system operationally

 As the entire test on hardware and software has been completed, the final phase

is to operate the overall project. This phase is crucial to assure that every aspects of the

project work as intended.

#include <reg51.h>

sbit ADDR_A= P0^0; //set Port0.0 as Address A

sbit ADDR_B= P0^1; //set Port0.1 as Address B

sbit ADDR_C= P0^2; //set Port0.2 as Address C

sbit ADDR_D= P0^3; //set Port0.3 as Address D

sbit OE = P0^4; //set Port0.4 as OE

sbit EOC = P0^5; //set Port0.5 as EOC

sbit SC = P0^6; //set Port0.6 as SC

sbit ALE = P0^7; //set Port0.7 as ALE

sfr MYDATA = 0xA0; //declare SFR at Port2 = 0xA0

sbit rs = P1^7; //set Port1.7 as RS

sbit rw = P1^6; //set Port1.6 as RW

sbit en = P1^5; //set Port1.5 as EN

sbit rf = P3^0; //set Port3.0 as RF

sbit regALSB = ACC^0; //least significant bit 1st

void lcdcmd(unsigned char value);

void lcddata(unsigned char value);

void time(unsigned char delay);

void vb(unsigned char number);

void display(unsigned char digital);

void main () /****main****/

{

 unsigned char store,r,s,t,u;

 MYDATA = 0xFF; // set as input

 SC = 0;

 49

 ALE = 0;

 OE = 0;

 EOC=1;

 while(1)

{

 ADDR_D = 0; //set Address D = 0

 ADDR_C = 0; //set Address C = 0

 ADDR_B = 0; //set Address B = 0

 ADDR_A = 0; //set Address A = 0

 ALE = 1; //enable latch address

 time(2); //set delay twice

 SC = 1; // ready to convert

 time(2); //set delay twice

 ALE = 0; //disable ALE

 SC = 0; //end of intial signal

 time(2); //set delay twice

 while(EOC==0); //monitor converted period

 while(EOC==1); //monitor conversion data done

 OE = 1; //ready to read data

 time(100); //set delay 100 times

 store = MYDATA ; //digital data transfer to P3

 time(100); //set delay 100 times

 OE = 0; //disable RD for next round

 vb(1); //display pc

 r = (MYDATA / 10); //convert HEX to ASCII

 s = (MYDATA % 10) + 0x30;

 t = (r % 10) + 0x30;

 display(s); //display at LCD

 display(t); //display at LCD

}

}

 50

void transmit(unsigned char MYDATA) /***Transmit subroutine***/

{

 unsigned char x;

 ACC = MYDATA; //send data to accumulator

 for(x=0;x<8;x++) //set 8 loops

{

 TMOD = 0x20; //use Timer 1, 8 - bit auto reload

 TH1=0xFD; //Set baud rate to 9600

 SCON=0x50; //use serial mode 1,8-bit data,1 stop bit,1 start bit

 TR1=1; //start timer

 rf = regALSB; //send data bit by bit

 ACC = ACC >> 1; //shift right

 SBUF= ACC; //insert signal in buffer

 while(TI==0); //wait till transmitted

 TI=0; //disable TI

 time(10); //set delay 10 times

 time(10); //set delay 10 times

}

}

void vb(unsigned char number) /****VB subroutine****/

{

 unsigned char y; //set y as unsigned char

 for (y=0;y<number;y++) //set loop

{

 TMOD = 0x20;//initialize data transfer to serial port T1,8bit auto reload

 TH1=0xFD; //9600 baud rate

 SCON=0x50; //initialize Serial CONtrol

 TR1=1; //start timer

 SBUF=MYDATA; //digital data into sbuf

 while(T1==0); //wait till tx

 T1=0; //disable timer

 time(100); //set delay 100 times

 51

}

}

void time(unsigned char delay) /****delay subroutine****/

{

unsigned char x; //define x as unsigned char

 for (x=0;x<delay;x++) //set loop

{

 TH0 = 0x4c; //4C=50ms

 TL0 = 0x00; //Clear rollover flag

 TF0 = 0; //Set TF0 to 0

 TR0 = 1; //on timer

 while (TF0 == 0); //monitor TF0

 TR0 = 0;} //off timer

 }

void display(unsigned char digital) /****LCD subroutine****/

{

unsigned char s,t;

sfr ldata = MYDATA;

lcdcmd(0x38); //2 lines,5x7 matrix

time(5); //set delay 5 times

lcdcmd(0x0E); //display on,cursor blinking

time(5); //set delay 5 times

lcdcmd(0x01); //clear screen display

time(5); //set delay 5 times

lcdcmd(0x06); //increment cursor,to right

time(5); //set delay 5 times

lcdcmd(0x80); //force cursor to begining of 1st line

time(5); //set delay 5 times

lcddata('D'); //send ASCII character D

time(100); //set delay 100 times

lcddata('A'); //send ASCII character A

 52

time(100); //set delay 100 times

lcddata('T'); //send ASCII character T

time(100); //set delay 100 times

lcddata('A'); //send ASCII character A

time(100); //set delay 100 times

lcddata(':'); //send ASCII character :

time(100); //set delay 100 times

lcddata(s); //send ASCII character from s

time(100); //set delay 100 times

lcddata(t); //send ASCII character from t

time(100); //set delay 100 times

}

void lcdcmd(unsigned char value) /******Command Subroutine******/

{

ldata = value; //send ASCII data

rs = 0; //set RS as 0

rw = 0; //set RW as 0

en = 1; //set EN as 1

time(5); //set delay 5 times

en = 0; //set EN as 0

return;

}

void lcddata(unsigned char value) /******Data Subroutine******/

{

ldata = value; //send ASCII data

rs = 1; //set RS as 1

rw = 0; //set RW as 0

en = 1; //set EN as 1

time(10); //set delay 10 times

en = 0; //set EN as 0

return;

}

	INTRO.doc
	CHAPTER 1.doc
	CHAPTER 2.doc
	CHAPTER 3.doc
	CHAPTER 4.doc
	CHAPTER 5.doc
	REFERENCE.doc
	Source Code For VB.doc

