REFERENCES

1. A.Hamidat, B.Benyoucef, T.Hartani, (2003). Small-Scale Irrigation with Photovoltaic Water Pumping System in Sahara Regions, 28, pp.1081-1096.
2. H S Kalsi, (1995) .Electronic Instrumentation. Tata MGraw-Hill
3. Muhammad Ali Mazidi and Janice Gillispie Mazidi, (1999).The 8051 Microcontroller and Embedded System. $1^{\text {st }}$ Edition. Prentice hall.
4. David I. Schneider, (2001). Introduction to Visual Basic 6.0. Prentice Hall, Upper Saddler River, New Jersey.
5. Thomas L.Floyd, (2002). Electronic Devices. $6^{\text {th }}$ Edition. Prentice Hall International, Inc, New Jersey.
6. CS Rangan, GR Sarma and VSV Mani, (1997).Instrumentation Devices \& Systems. Tata McGraw-Hill Publishing, Delhi.
7. M.Morris Mano and Charles R.Kimie, (2001). Logic and Computer Design Fundamentals. $2^{\text {nd }}$ Edition, Prentice Hall, New Jersey.
8. www.iguanalabs.com

APPENDICES

Appendix A: Assembly Language Program for ADC Data Conversion

```
cpu "8051.tbl"
incl "8051.inc"
org 50h
volt: dfs 1
org 0
mov tmod, #00100001B
mov scon,#01010010B
mov th1,#253
setb tr1
start:
clr p2.1 ; clear port output
setb p2.0 ; setting star conversion from ADC
nop
clr p2.0
nop
nop
nop
setb p2.0
jb p3.2,$
mov a,p1 ;get data from ADC
```

cjne a,volt,xsame
jmp start
xsame:
mov volt, a
swap a
anl a,\#0fh
mov dptr,\#table
move a,@a+dptr
call tx
mov a, volt
anl a, \#0fh
mov dptr,\#table
move a, @a+dptr
call tx
jmp start
tx: jnb ti,\$; transfer data to serial port
clr ti
mov sbuf,a
ret
table: dfb "0123456789ABCDEF"

Appendix B: Assembly Language Program for Water Monitoring System

```
cpu "8051.tbl"
incl "8051.inc"
org 0
mov tmod, #00100001B
mov scon,#01010010B
mov th1,#253
setb tr1
clr p2.1 ;output
start: call delay
    setb p2.0 ; setting star conversion from ADC
    nop
    clr p2.0
    nop
    nop
    nop
    setb p2.0
    jb p3.2,$
    mov a,p1 ; get data from ADC
    cjne a,#19h,xsame19 ; compare data from ADC with 19H
    jmp cm25
```

xsame19:	jnc more19	
	mov dptr, \#XVALID	
	call tmltr	
	jmp start	
more19:	cjne a,\#21h,xsame21	; compare data from ADC with 21 H
	jmp cm20	
$\begin{aligned} & \text { xsame21: } \\ & \text { cm25: } \end{aligned}$	jnc more21	
	mov dptr,\#TABLE25	
	call tmltr	
	jmp start	
more21:	cjne a,\#2ch,xsame2c	; compare data from ADC with 2C
	jmp cm15	
xsame2c:	jnc more2c	
cm20:	mov dptr,\#TABLE20	
	call tmltr	
	setb p2.1	; set output to run pump circuit
	jmp start	
more2c:	cjne a,\#40h,xsame40	; compare data from ADC with 40 H
	jmp cm10	
xsame40: cm15:	jnc more40	; set output to run pump circuit
	mov dptr,\#TABLE15	
	call tmltr	
	setb p2.1	
	jmp start	
more40:	cjne a,\#76h,xsame76	; compare data from ADC with 76H

jmp cm5
xsame76: jnc more76

cm5: \quad clr p2.1 ; set output to stop pump circuit
tmltr: \quad clr a
move a,@a+dptr
cjne a, \#0,next
ret
next: call tx
inc dptr
jmp tmltr
tx: \quad jnb ti, \$
clr ti
mov sbuf, a
ret
rx: jnb ri,\$
clr ri
mov a,sbuf
ret

delay:	mov r2,\#100
again:	mov r3,\#100
here:	nop
	nop
	djnz r3,here
	djnz r2,again
	ret

XVALID: dfb "LO",0
XVALID2: dfb "HI",0
TABLE25: dfb "05",0
TABLE20: dfb "10",0
TABLE15: dfb "15",0
TABLE10: dfb "20",0
TABLE5: dfb "25",0

Appendix C: Visual Basic Programming for Water Monitoring System

Dim Data As String

Private Sub Form_Load()
MSComm1.CommPort $=1$
'Setting Serial Port'
MSComm1.Settings $=$ "9600,N,8,1"
MSComm1.InputLen $=0$
MSComm1.PortOpen $=$ True
End Sub

Private Sub timer1_timer()
If Shape6.FillColor $=v b W h i t e ~ T h e n ~$
Shape6.FillColor $=$ vbRed
Else
Shape6.FillColor $=v b W h i t e$
End If

If Shape7.FillColor $=v b W h i t e ~ T h e n ~$

Shape7.FillColor $=$ vbRed
Else
Shape7.FillColor $=$ vbWhite
End If

If Shape8.FillColor $=v b W h i t e ~ T h e n ~$

Shape8.FillColor $=$ vbRed

Else
Shape8.FillColor $=\mathrm{vbWh}$ ite
End If

If Shape9.FillColor $=$ vbWhite Then

Shape9.FillColor $=$ vbRed
Else
Shape9.FillColor $=v b W h i t e$
End If
End Sub

Private Sub Timer2_Timer()
Text1.Text $=$ MSComm1.Input \quad 'Commands to Received Data from Microcontroller'
Data $=$ Text1.Text

If Data = "LO" Then
Label8.Caption = "Low Level"
Shape 2. Height $=120$
Shape2.Top $=7200$
Timer 1.Enabled $=$ False

ElseIf Data = "25" Then
Label 8. Caption $=$ "level $1 "$
Shape2. Height $=1100$
Shape2.Top $=6160$
Timer1.Enabled $=$ False
'Control level Water'
'Shape will increase when level increase ' ,

ElseIf Data = "20" Then

Label8.Caption = "level 2 "
Shape2. Height $=2340$
Shape2.Top $=4920$
Timer1.Enabled $=$ False

ElseIf Data $=$ " 15 " Then
Label8.Caption = "level $3 "$
Shape2. Height $=3660$
Shape2.Top $=3600$
Timer1.Enabled $=$ False

ElseIf Data $=" 10 "$ Then
Labe18.Caption = "High level"
Shape2. Height $=4980$
Shape2.Top $=2280$
Timer 1.Enabled $=$ True

ElseIf Data $=$ " 05 " Then
Label8.Caption = "High level"
Shape2. Height $=4980$
Shape2.Top $=2280$
Timer 1.Enabled $=$ True

ElseIf Data = "HI" Then
Label8.Caption = "High level"
Shape2. Height $=4980$
Shape2.Top $=2280$
Timer1.Enabled $=$ True

End If
End Sub

Private Sub Timer3_Tin
Label3.Caption = Time
Label6.Caption $=$ Date
End Sub

APPENDIX D

Data Sheet GP2D120

APPENDIX E

Data Sheet AT89S52

APPENDIX F

Data Sheet ADC0804

Features

- Compatible with MCS-51 ${ }^{\oplus}$ Products
- 8K Bytes of In-System Programmable (ISP) Flash Memory
- Endurance: 1000 Write/Erase Cycles
- 4.0 V to 5.5 V Operating Range
- Fully Static Operation: 0 Hz to 33 MHz
- Three-level Program Memory Lock
- 256 x 8-bit Internal RAM
- 32 Programmable I/O Lines
- Three 16-bit Timer/Counters
- Eight Interrupt Sources
- Full Duplex UART Serial Channel
- Low-power Idle and Power-down Modes
- Interrupt Recovery from Power-down Mode
- Watchdog Timer
- Dual Data Pointer
- Power-off Flag

Description

The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8 K bytes of in-system programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the indus-try-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8 -bit CPU with in-system programmable Flash on a monolithic chip, the Atmel AT89S52 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.
The AT89S52 provides the following standard features: 8K bytes of Flash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.

AT89S52

Pin Configurations

	PDIP		
(T2) P1.0	1	40	$\square \mathrm{VCC}$
(T2 EX) P1.1	2	39	P0.0 (ADO)
P1.2	3	38	P P0.1 (AD1)
P1.3	4	37	P0.2 (AD2)
P1.4	5	36	P0.3 (AD3)
(MOSI) P1.5	6	35	$\square \mathrm{P} 0.4$ (AD4)
(MISO) P1.6	7	34	$\square \mathrm{P} 0.5$ (AD5)
(SCK) P1.7	8	33	$\square \mathrm{P} 0.6$ (AD6)
RST	9	32	P0.7 (AD7)
(RXD) P3.0	10	31	$\square \overline{E A} / \mathrm{VPP}$
(TXD) P3.1	11	30	$\square A L E / \overline{\text { PROG }}$
(INT0) P3.2	12	29	$\square \overline{P S E N}$
(INT1) P3.3	13	28	P2.7 (A15)
(T0) P3.4	14	27	P2.6 (A14)
(T1) P3.5	15	26	$\square \mathrm{P} 2.5$ (A13)
(WR) P3. 6	16	25	$\square \mathrm{P} 2.4$ (A12)
($\overline{\mathrm{RD}}$) P3.7	17	24	P2.3 (A11)
XTAL2	18	23	\square P2.2 (A10)
XTAL1	19	22	P2.1 (A9)
GND	20	21	P12.0 (A8)

Block Diagram

Pin Description

VCC

Supply voltage.

GND

Ground.

Port 0

Port 0 is an 8 -bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs.
Port 0 can also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode, P0 has internal pullups.
Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1

Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1 s are written to Port 1 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current $\left(I_{L L}\right)$ because of the internal pullups.
In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table.
Port 1 also receives the low-order address bytes during Flash programming and verification.

Port Pin	Alternate Functions
P1.0	T2 (external count input to Timer/Counter 2), clock-out
P1.1	T2EX (Timer/Counter 2 capture/reload trigger and direction control)
P1.5	MOSI (used for In-System Programming)
P1.6	MISO (used for In-System Programming)
P1.7	SCK (used for In-System Programming)

Port 2

Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1 s are written to Port 2 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ($I_{\text {LL }}$) because of the internal pullups.
Port 2 emits the high-order address byte during fetches from external program memory and during accesses to
external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pullups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3

Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{LL}) because of the pullups.
Port 3 also serves the functions of various special features of the AT89S52, as shown in the following table.
Port 3 also receives some control signals for Flash programming and verification.

Port Pin	Alternate Functions
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { INT0 (external interrupt 0) }}$
P3.3	$\overline{\text { NT1 }}$ (external interrupt 1)
P3.4	T0 (timer 0 external input)
P3.5	T1 (timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD }}$ (external data memory read strobe)

RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 96 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

ALE/PROG

Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (िROG) during Flash programming.
In normal operation, ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is
weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

$\overline{\text { PSEN }}$

Program Store Enable ($\overline{\text { PSEN }}$) is the read strobe to external program memory.
When the AT89S52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

EA/VPP

External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000 H up to FFFFH.

Note, however, that if lock bit 1 is programmed, $\overline{E A}$ will be internally latched on reset.
$\overline{\mathrm{EA}}$ should be strapped to V_{CC} for internal program executions.
This pin also receives the 12-volt programming enable voltage (V_{PP}) during Flash programming.
XTAL1
Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2
Output from the inverting oscillator amplifier.

Table 1. AT89S52 SFR Map and Reset Values

0F8H									0FFH
OFOH	$\begin{gathered} \text { B } \\ 00000000 \end{gathered}$								0F7H
0E8H									OEFH
OEOH	$\begin{gathered} \text { ACC } \\ 00000000 \end{gathered}$								0E7H
0D8H									ODFH
ODOH	$\begin{gathered} \text { PSW } \\ 00000000 \end{gathered}$								0D7H
0C8H	$\begin{gathered} \text { T2CON } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { T2MOD } \\ & \text { XXXXXX00 } \end{aligned}$	$\begin{aligned} & \text { RCAP2L } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { RCAP2H } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { TL2 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH2 } \\ 00000000 \end{gathered}$			OCFH
OCOH									0C7H
0B8H	$\begin{gathered} \text { IP } \\ \times \times 000000 \end{gathered}$								OBFH
OBOH	$\begin{gathered} \text { P3 } \\ 11111111 \end{gathered}$								0B7H
0A8H	$\begin{gathered} \text { IE } \\ 0 \times 000000 \end{gathered}$								OAFH
OAOH	$\begin{gathered} \text { P2 } \\ 11111111 \end{gathered}$		AUXR1 XXXXXXX0				$\begin{gathered} \text { WDTRST } \\ \text { XXXXXXX } \end{gathered}$		0A7H
98H	$\begin{gathered} \text { SCON } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SBUF } \\ \text { XXXXXXX } \end{gathered}$							9FH
90 H	$\begin{gathered} \text { P1 } \\ 11111111 \end{gathered}$								97H
88H	$\begin{gathered} \text { TCON } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TMOD } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TLO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TL1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { THO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { AUXR } \\ \text { XXX00XX0 } \end{gathered}$		8FH
80 H	$\begin{gathered} \text { P0 } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPOL } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPOH } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DP1L } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DP1H } \\ 00000000 \end{gathered}$		$\begin{gathered} \text { PCON } \\ \text { 0XXX0000 } \end{gathered}$	87H

Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1.
Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.
User software should not write 1 s to these unlisted locations, since they may be used in future products to invoke
new features. In that case, the reset or inactive values of the new bits will always be 0 .
Timer 2 Registers: Control and status bits are contained in registers T2CON (shown in Table 2) and T2MOD (shown in Table 3) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.
Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.

Table 2. T2CON - Timer/Counter 2 Control Register

T2CON Address $=0 \mathrm{C} 8 \mathrm{H}$ Reset Value $=0000$ 0000B Bit Addressable								
Bit	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	$\mathrm{C} / \mathrm{T} 2$	$\mathrm{CP} / \overline{\mathrm{RL} 2}$
	7	6	5	4	3	2	1	0
Symbol	Function							
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or $\operatorname{TCLK}=1$.							
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 $=1$. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).							
RCLK	Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3 . RCLK $=0$ causes Timer 1 overflow to be used for the receive clock.							
TCLK	Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3 . TCLK $=0$ causes Timer 1 overflows to be used for the transmit clock.							
EXEN2	Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 $=0$ causes Timer 2 to ignore events at T2EX.							
TR2	Start/Stop control for Timer 2. TR2 = 1 starts the timer.							
$\mathrm{C} / \overline{\mathrm{T}}$	Timer or counter select for Timer 2. $\mathrm{C} / \overline{\mathrm{T} 2}=0$ for timer function. $\mathrm{C} / \overline{\mathrm{T} 2}=1$ for external event counter (falling edge triggered).							
CP/RL2	Capture/Reload select. CP/RL2 $=1$ causes captures to occur on negative transitions at T2EX if EXEN2 $=1$. CP/RL2 $=0$ causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 $=1$. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.							

Table 3a. AUXR: Auxiliary Register

AUXR	Address $=8 \mathrm{EH}$ Not Bit Addressable						Reset Value = XXX00XXOB			
		-		-	-	WDIDLE	DISRTO	-	-	DISALE
	Bit	7		6	5	4	3	2	1	0
-	Reserved for future expansion									
DISALE	Disable/Enable ALE									
	DISALE	Operating Mode								
	0	ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency								
		ALE is active only during a MOVX or MOVC instruction								
DISRTO	Disable/Enable Reset out									
	DISRTO									
	0	Reset pin is driven High after WDT times out								
	1	Reset pin is input only								
WDIDLE	Disable/Enable WDT in IDLE mode									
	WDIDLE									
	0	WDT continues to count in IDLE mode								
	1	WDT halts counting in IDLE mode								

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations $82 \mathrm{H}-83 \mathrm{H}$ and DP1 at $84 \mathrm{H}-85 \mathrm{H}$. Bit DPS $=0$ in SFR AUXR1 selects DP0 and DPS $=1$ selects DP1. The user should always initialize the DPS bit to the
appropriate value before accessing the respective Data Pointer Register.
Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to " 1 " during power up. It can be set and rest under software control and is not affected by reset.

Table 3b. AUXR1: Auxiliary Register 1

AUXR1	Address $=$ A2H					Reset Value = XXXXXXXX0B			
	Not Bit Addressable								
		-	-	-	-	-	-	-	DPS
	Bit	7	6	5	4	3	2	1	0
-	Reserved for future expansion								
DPS	Data Pointer Register Select								
	DPS								
	0	Selects DPTR Registers DPOL, DPOH							
	1	Selects DPTR Registers DP1L, DP1H							

Memory Organization

MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.

Program Memory

If the EA pin is connected to GND, all program fetches are directed to external memory.
On the AT89S52, if $\overline{E A}$ is connected to V_{CC}, program fetches to addresses 0000 H through 1FFFH are directed to internal memory and fetches to addresses 2000 H through FFFFH are to external memory.

Data Memory

The AT89S52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. This means that the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions which use direct addressing access of the SFR space.
For example, the following direct addressing instruction accesses the SFR at location OAOH (which is P2).

MOV OAOH, \#data
Instructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where RO contains 0 AOH , accesses the data byte at address 0 AOH , rather than P2 (whose address is 0 AOH).

MOV @RO, \#data
Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

AT89S52

Watchdog Timer (One-time Enabled with Reset-out)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 13-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01 EH and 0 E 1 H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

Using the WDT

To enable the WDT, a user must write 01 EH and 0 E 1 H in sequence to the WDTRST register (SFR location OA6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 13-bit counter overflows when it reaches 8191 (1FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 8191 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $96 \times$ TOSC, where TOSC $=1 /$ FOSC. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

WDT During Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level-activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S52 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode.

To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode.
Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit $=0$) as the default state. To prevent the WDT from resetting the AT89S52 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode.
With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.

UART

The UART in the AT89S52 operates the same way as the UART in the AT89C51 and AT89C52. For further information on the UART operation, refer to the ATMEL Web site (http://www.atmel.com). From the home page, select 'Products', then '8051-Architecture Flash Microcontroller', then 'Product Overview'.

Timer 0 and 1

Timer 0 and Timer 1 in the AT89S52 operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52. For further information on the timers' operation, refer to the ATMEL Web site (http://www.atmel.com). From the home page, select 'Products', then '8051-Architecture Flash Microcontroller', then 'Product Overview'.

Timer 2

Timer 2 is a 16 -bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit C/T2 in the SFR T2CON (shown in Table 2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON, as shown in Table 3. Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is $1 / 12$ of the oscillator frequency.
Table 3. Timer 2 Operating Modes

RCLK +TCLK	CP/ㅈR2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	X	1	Baud Rate Generator
X	X	0	(Off)

In the Counter function, the register is incremented in response to a 1 -to- 0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1 -to-0 transition, the maximum count rate is $1 / 24$ of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

Capture Mode

In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 is a 16 -bit timer or counter which upon overflow sets bit TF2 in T2CON.

This bit can then be used to generate an interrupt. If EXEN2 $=1$, Timer 2 performs the same operation, but a 1 -to- 0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 5.

Auto-reload (Up or Down Counter)

Timer 2 can be programmed to count up or down when configured in its 16 -bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit located in the SFR T2MOD (see Table 4). Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin.

Figure 5. Timer in Capture Mode

Figure 6 shows Timer 2 automatically counting up when DCEN=0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 counts up to 0 FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16 -bit value in RCAP2H and RCAP2L. The values in Timer in Capture ModeRCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16 -bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.
Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 6. In this mode, the T2EX pin controls
the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at OFFFFH and set the TF2 bit. This overflow also causes the 16 -bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.
A logic 0 at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0 FFFFF to be reloaded into the timer registers.
The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.

Figure 6. Timer 2 Auto Reload Mode ($\mathrm{DCEN}=0$)

Table 4. T2MOD - Timer 2 Mode Control Register

T2MOD Address $=0 \mathrm{C} 9 \mathrm{H}$					Reset Value $=$ XXXX XX00B			
Not Bit Addressable								
	-	-	-	-	-	-	T2OE	DCEN
Bit	7	6	5	4	3	2	1	0
Symbol	Function							
-	Not implemented, reserved for future							
T2OE	Timer 2 Output Enable bit							
DCEN	When set, this bit allows Timer 2 to be configured as an up/down counter							

Figure 7. Timer 2 Auto Reload Mode (DCEN = 1)

Figure 8. Timer 2 in Baud Rate Generator Mode

Baud Rate Generator

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 8.
The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.
The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

$$
\text { Modes } 1 \text { and } 3 \text { Baud Rates }=\frac{\text { Timer } 2 \text { Overflow Rate }}{16}
$$

The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation ($C P / \overline{T 2}=0$). The timer operation is different for Timer 2 when it is used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at $1 / 12$ the oscillator frequency). As a baud rate generator, however, it
increments every state time (at $1 / 2$ the oscillator frequency). The baud rate formula is given below.

$$
\frac{\text { Modes } 1 \text { and } 3}{\text { Baud Rate }}=\frac{\text { Oscillator Frequency }}{32 \times[65536-\text { RCAP2H,RCAP2L) }]}
$$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16 -bit unsigned integer.
Timer 2 as a baud rate generator is shown in Figure 8. This figure is valid only if RCLK or TCLK $=1$ in T2CON. Note that a rollover in TH2 does not set TF2 and will not generate an interrupt. Note too, that if EXEN2 is set, a 1 -to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus, when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.
Note that when Timer 2 is running (TR2 =1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. Under these conditions, the Timer is incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Figure 9. Timer 2 in Clock-Out Mode

Programmable Clock Out

A 50% duty cycle clock can be programmed to come out on P1.0, as shown in Figure 9. This pin, besides being a reguIar I/O pin, has two alternate functions. It can be programmed to input the external clock for Timer/Counter 2 or to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency.
To configure the Timer/Counter 2 as a clock generator, bit $\mathrm{C} / \overline{\mathrm{T} 2}$ (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer. The clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L), as shown in the following equation.

$$
\text { Clock-Out Frequency }=\frac{\text { Oscillator Frequency }}{4 \times[65536-(\text { RCAP2H,RCAP2L) }]}
$$

In the clock-out mode, Timer 2 roll-overs will not generate an interrupt. This behavior is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies cannot be determined independently from one another since they both use RCAP2H and RCAP2L.

Interrupts

The AT89S52 has a total of six interrupt vectors: two external interrupts ($\overline{\mathrm{NTO}}$ and $\overline{\mathrm{NT} 1}$), three timer interrupts (Timers 0 , 1 , and 2), and the serial port interrupt. These interrupts are all shown in Figure 10.
Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.
Note that Table 5 shows that bit position IE. 6 is unimplemented. In the AT89S52, bit position IE. 5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products.
Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.
The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.

Table 5. Interrupt Enable (IE) Register

| (MSB) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EA - ET2
 ES ET1 EX1
 ET0 EX0 |
| Enable Bit $=1$ enables the interrupt. |
| Enable Bit $=0$ disables the interrupt. |

Symbol	Position	Function
EA	IE. 7	Disables all interrupts. If EA $=0$, no interrupt is acknowledged. If EA $=1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
-	IE.6	Reserved.
ET2	IE.5	Timer 2 interrupt enable bit.
ES	IE.4	Serial Port interrupt enable bit.
ET1	IE.3	Timer 1 interrupt enable bit.
EX1	IE.2	External interrupt 1 enable bit.
ET0	IE.1	Timer 0 interrupt enable bit.
EX0	IE.0	External interrupt 0 enable bit.
User software should never write 1s to unimplemented bits, because they may be used in future AT89 products.		

Figure 10. Interrupt Sources

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 11. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 12. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Idle Mode

In idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.
Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

Power-down Mode

In the Power-down mode, the oscillator is stopped, and the instruction that invokes Power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by an enabled external interrupt. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before $V_{C C}$ is restored to its normal operating level and must be held
active long enough to allow the oscillator to restart and stabilize.

Figure 11. Oscillator Connections

Note: $\quad \mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
$=40 \mathrm{pF} \pm 10 \mathrm{pF}$ for Ceramic Resonators
Figure 12. External Clock Drive Configuration

Table 6. Status of External Pins During Idle and Power-down Modes

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

Program Memory Lock Bits

The AT89S52 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.
Table 7. Lock Bit Protection Modes

| Program Lock Bits
 LB1 | | | | LB2 |
| :---: | :---: | :---: | :---: | :--- | LB3 \quad Protection Type | 1 | U | U |
| :---: | :---: | :--- |
| U | U | No program lock features |
| 2 | P | U |
| U | MOVC instructions executed
 from external program
 memory are disabled from
 fetching code bytes from
 internal memory, EA is
 sampled and latched on reset,
 and further programming of
 the Flash memory is disabled | |
| 3 | P | P |
| U | | |

When lock bit 1 is programmed, the logic level at the $\overline{E A}$ pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of $\overline{E A}$ must agree with the current logic level at that pin in order for the device to function properly.

Programming the Flash - Parallel Mode

The AT89S52 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.
The AT89S52 code memory array is programmed byte-bybyte.
Programming Algorithm: Before programming the AT89S52, the address, data, and control signals should be set up according to the Flash programming mode table and Figures 13 and 14. To program the AT89S52, take the following steps:

1. Input the desired memory location on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{\mathrm{EA}} / V_{\mathrm{PP}}$ to 12 V .
5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than $50 \mu \mathrm{~s}$.

Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.
Data Polling: The AT89S52 features $\overline{\text { Data }}$ Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.
Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.
Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be verified directly by reading them back.
Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations $000 \mathrm{H}, 100 \mathrm{H}$, and 200 H , except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

$$
\begin{aligned}
& (000 \mathrm{H})=1 \mathrm{EH} \text { indicates manufactured by Atmel } \\
& (100 \mathrm{H})=52 \mathrm{H} \text { indicates } 89 \mathrm{~S} 52 \\
& (200 \mathrm{H})=06 \mathrm{H}
\end{aligned}
$$

Chip Erase: In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of $200 \mathrm{~ns}-500 \mathrm{~ns}$.
In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms .
During chip erase, a serial read from any address location will return 00 H at the data output.

Programming the Flash - Serial Mode

The Code memory array can be programmed using the serial ISP interface while RST is pulled to V_{cc}. The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.
The Chip Erase operation turns the content of every memory location in the Code array into FFH.
Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK)
frequency should be less than $1 / 16$ of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz .

Serial Programming Algorithm

To program and verify the AT89S52 in the serial programming mode, the following sequence is recommended:

1. Power-up sequence:

Apply power between VCC and GND pins.
Set RST pin to "H".
If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.
2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
3. The Code array is programmed one byte at a time by supplying the address and data together with the
appropriate Write instruction. The write cycle is selftimed and typically takes less than 1 ms at 5 V .
4. Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output MISO/P1.6.
5. At the end of a programming session, RST can be set low to commence normal device operation.
Power-off sequence (if needed):
Set XTAL1 to "L" (if a crystal is not used).
Set RST to "L".
Turn V_{CC} power off.
Data Polling: The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

Serial Programming Instruction Set

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 10.

Programming Interface - Parallel Mode
Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.

Table 8. Flash Programming Modes

				ALE/	$\overline{E A} /$						P0.7-0	P2.4-0	P1.7-0
Mode	v_{cc}	RST	$\overline{\text { PSEN }}$	$\overline{\text { PROG }}$	V_{PP}	P2.6	P2.7	P3.3	P3.6	P3.7	Data	Address	
Write Code Data	5 V	H	L		12V	L	H	H	H	H	$D_{\text {IN }}$	A12-8	A7-0
Read Code Data	5 V	H	L	H	H	L	L	L	H	H	$\mathrm{D}_{\text {OUT }}$	A12-8	A7-0
Write Lock Bit 1	5 V	H	L		12V	H	H	H	H	H	X	X	X
Write Lock Bit 2	5 V	H	L		12V	H	H	H	L	L	X	X	X
Write Lock Bit 3	5 V	H	L		12V	H	L	H	H	L	X	X	X
Read Lock Bits $1,2,3$	5 V	H	L	H	H	H	H	L	H	L	P0.2, P0.3, P0.4	X	X
Chip Erase	5 V	H	L		12V	H	L	H	L	L	X	X	X
Read Atmel ID	5 V	H	L	H	H	L	L	L	L	L	1EH	X 0000	00H
Read Device ID	5 V	H	L	H	H	L	L	L	L	L	52 H	X 0001	00H
Read Device ID	5 V	H	L	H	H	L	L	L	L	L	06H	X 0010	OOH

Notes: 1. Each PROG pulse is $200 \mathrm{~ns}-500 \mathrm{~ns}$ for Chip Erase.
2. Each PROG pulse is $200 \mathrm{~ns}-500 \mathrm{~ns}$ for Write Code Data.
3. Each PROG pulse is $200 \mathrm{~ns}-500 \mathrm{~ns}$ for Write Lock Bits.
4. $\mathrm{RDY} / \overline{\mathrm{BSY}}$ signal is output on P 3.0 during programming.
5. $\mathrm{X}=$ don't care.

Figure 13. Programming the Flash Memory (Parallel Mode)

Figure 14. Verifying the Flash Memory (Parallel Mode)

Flash Programming and Verification Characteristics (Parallel Mode)
$\mathrm{T}_{\mathrm{A}}=20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V

Symbol	Parameter	Min	Max	Units
$V_{\text {PP }}$	Programming Supply Voltage	11.5	12.5	V
I_{PP}	Programming Supply Current		10	mA
I_{CC}	V_{CC} Supply Current		30	mA
1/t CLCL	Oscillator Frequency	3	33	MHz
$\mathrm{t}_{\text {AVGL }}$	Address Setup to PROG Low	$48 \mathrm{t}_{\text {CLCL }}$		
$\mathrm{t}_{\text {GHAX }}$	Address Hold After $\overline{\text { PROG }}$	$48 \mathrm{t}_{\text {CLCL }}$		
$\mathrm{t}_{\text {DVGL }}$	Data Setup to $\overline{\text { PROG }}$ Low	$48 \mathrm{t}_{\text {CLCL }}$		
$\mathrm{t}_{\text {GHDX }}$	Data Hold After PROG	$48 \mathrm{t}_{\text {CLCL }}$		
$\mathrm{t}_{\text {EHSH }}$	P2.7 ($\overline{\text { ENABLE }}$) High to $\mathrm{V}_{\text {PP }}$	$48 \mathrm{t}_{\text {CLCL }}$		
$\mathrm{t}_{\text {SHGL }}$	V_{PP} Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$
$\mathrm{t}_{\text {GHSL }}$	$\mathrm{V}_{\text {PP }}$ Hold After $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
$\mathrm{t}_{\text {GLGH }}$	$\overline{\text { PROG Width }}$	0.2	1	$\mu \mathrm{s}$
$\mathrm{t}_{\text {AVQV }}$	Address to Data Valid		$48 \mathrm{t}_{\mathrm{CLCL}}$	
$\mathrm{t}_{\text {ELQV }}$	ENABLE Low to Data Valid		$48 \mathrm{t}_{\mathrm{CLCL}}$	
$\mathrm{t}_{\text {EHQZ }}$	Data Float After ENABLE	0	$48 \mathrm{t}_{\mathrm{CLCL}}$	
$\mathrm{t}_{\text {GHBL }}$	$\overline{\text { PROG }}$ High to $\overline{\text { BUSY }}$ Low		1.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {wc }}$	Byte Write Cycle Time		50	$\mu \mathrm{s}$

Figure 15. Flash Programming and Verification Waveforms - Parallel Mode

Figure 16. Flash Memory Serial Downloading

Flash Programming and Verification Waveforms - Serial Mode

Figure 17. Serial Programming Waveforms

Table 9. Serial Programming Instruction Set

Instruction	Instruction Format				
	Byte 1	Byte 2	Byte 3	Byte 4	Operation

Notes: 1. The signature bytes are not readable in Lock Bit Modes 3 and 4.
2. $\mathrm{B} 1=0, \mathrm{~B} 2=0-->$ Mode 1, no lock protection
$B 1=0, B 2=1--->$ Mode 2, lock bit 1 activated
$B 1=1, B 2=0--->$ Mode 3, lock bit 2 activated
$B 1=1, B 1=1-->$ Mode 4, lock bit 3 activated
After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than $1 / 16$ of the system clock at XTAL1.

Each of the lock bits needs to be activated sequentially before Mode 4 can be executed.

For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

Serial Programming Characteristics

Figure 18. Serial Programming Timing

Table 10. Serial Programming Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.0-5.5 \mathrm{~V}$ (Unless otherwise noted)

Symbol	Parameter	Min	Typ	Max
$1 / t_{\text {CLCL }}$	Oscillator Frequency	0		Units
$t_{\text {CLCL }}$	Oscillator Period	30		33
$t_{\text {SHSL }}$	SCK Pulse Width High	$2 \mathrm{t}_{\mathrm{CLCL}}$		
$\mathrm{t}_{\text {SLSH }}$	SCK Pulse Width Low	$2 \mathrm{t}_{\mathrm{CLCL}}$		ns
$\mathrm{t}_{\text {OVSH }}$	MOSI Setup to SCK High	$\mathrm{t}_{\mathrm{CLCL}}$		ns
$\mathrm{t}_{\text {SHOX }}$	MOSI Hold after SCK High	$2 \mathrm{t}_{\mathrm{CLCL}}$		ns
$\mathrm{t}_{\text {SLIV }}$	SCK Low to MISO Valid	10		16
$\mathrm{t}_{\text {ERASE }}$	Chip Erase Instruction Cycle Time			ns
$\mathrm{t}_{\text {SWC }}$	Serial Byte Write Cycle Time			ns

Absolute Maximum Ratings*

Operating Temperature............................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground-1.0V to +7.0 V
Maximum Operating Voltage .. 6.6 V
DC Output Current.. 15.0 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

The values shown in this table are valid for $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ to 5.5 V , unless otherwise noted.

Symbol	Parameter	Condition	Min	Max	Units
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	(Except $\overline{\mathrm{EA}}$)	-0.5	$0.2 \mathrm{~V}_{\text {cc }}-0.1$	V
$\mathrm{V}_{\text {LL } 1}$	Input Low Voltage (EA)		-0.5	$0.2 \mathrm{~V}_{\text {cc }}-0.3$	V
V_{IH}	Input High Voltage	(Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage	(XTAL1, RST)	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{OL}	Output Low Voltage ${ }^{(1)}$ (Ports 1,2,3)	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.45	V
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage ${ }^{(1)}$ (Port 0, ALE, PSEN)	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$		0.45	V
V_{OH}	Output High Voltage (Ports 1,2,3, ALE, PSEN)	$\mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-25 \mu \mathrm{~A}$	$0.75 \mathrm{~V}_{\mathrm{cc}}$		V
		$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	$0.9 \mathrm{~V}_{\mathrm{CC}}$		V
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A}$	$0.75 \mathrm{~V}_{\mathrm{cc}}$		V
		$\mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$	$0.9 \mathrm{~V}_{\mathrm{CC}}$		V
ILL	Logical 0 Input Current (Ports 1,2,3)	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$		-50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1,2,3)	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$		-650	$\mu \mathrm{A}$
I_{LI}	Input Leakage Current (Port 0, EA)	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$		± 10	$\mu \mathrm{A}$
RRST	Reset Pulldown Resistor		10	30	$\mathrm{K} \Omega$
C_{10}	Pin Capacitance	Test Freq. $=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	pF
I_{CC}	Power Supply Current	Active Mode, 12 MHz		25	mA
		Idle Mode, 12 MHz		6.5	mA
	Power-down Mode ${ }^{(1)}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		50	$\mu \mathrm{A}$

Notes: 1. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:
Maximum IoL per port pin: 10 mA
Maximum I_{OL} per 8-bit port:
Port 0: $26 \mathrm{~mA} \quad$ Ports 1, 2, 3: 15 mA
Maximum total I_{OL} for all output pins: 71 mA
If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
2. Minimum V_{CC} for Power-down is 2 V .

AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE//PROG, and $\overline{P S E N}=100 \mathrm{pF}$; load capacitance for all other outputs $=80 \mathrm{pF}$.

External Program and Data Memory Characteristics

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/t ${ }_{\text {CLCL }}$	Oscillator Frequency			0	33	MHz
$\mathrm{t}_{\text {LHLL }}$	ALE Pulse Width	127		$2 \mathrm{t}_{\mathrm{CLCL}}-40$		ns
$\mathrm{t}_{\text {AVLL }}$	Address Valid to ALE Low	43		$\mathrm{t}_{\mathrm{CLCL}}-25$		ns
$\mathrm{t}_{\text {LLAX }}$	Address Hold After ALE Low	48		$\mathrm{t}_{\text {CLCL-25 }}$		ns
$\mathrm{t}_{\text {LLIV }}$	ALE Low to Valid Instruction In		233		$4 \mathrm{t}_{\text {CLCL }}-65$	ns
tLLPL	ALE Low to $\overline{\text { PSEN }}$ Low	43		$\mathrm{t}_{\mathrm{CLCL}}-25$		ns
$\mathrm{t}_{\text {PLPH }}$	$\overline{\text { PSEN Pulse Width }}$	205		$3 \mathrm{t}_{\mathrm{CLCL}}-45$		ns
$\mathrm{t}_{\text {PLIV }}$	$\overline{\text { PSEN Low to Valid Instruction In }}$		145		$3 \mathrm{t}_{\mathrm{CLCL}}-60$	ns
$\mathrm{t}_{\text {PXIX }}$	Input Instruction Hold After $\overline{\text { PSEN }}$	0		0		ns
$\mathrm{t}_{\text {PXIZ }}$	Input Instruction Float After PSEN		59		$\mathrm{t}_{\mathrm{CLCL}}-25$	ns
$t_{\text {PXAV }}$	$\overline{\text { PSEN }}$ to Address Valid	75		$\mathrm{t}_{\mathrm{CLCL}}{ }^{-8}$		ns
$\mathrm{t}_{\text {AVIV }}$	Address to Valid Instruction In		312		$5 \mathrm{t}_{\mathrm{CLCL}}-80$	ns
$\mathrm{t}_{\text {PLAZ }}$	$\overline{\text { PSEN Low to Address Float }}$		10		10	ns
$\mathrm{t}_{\text {RLRH }}$	$\overline{\mathrm{RD}}$ Pulse Width	400		$6 \mathrm{t}_{\text {CLCL }}-100$		ns
$t_{\text {WLWH }}$	$\overline{\text { WR Pulse Width }}$	400		$6 \mathrm{t}_{\text {CLCLL }}-100$		ns
$t_{\text {RLDV }}$	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		$5 \mathrm{t}_{\text {CLCL }}-90$	ns
$\mathrm{t}_{\text {RHDX }}$	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
$\mathrm{t}_{\text {RHDZ }}$	Data Float After $\overline{\mathrm{RD}}$		97		$2 \mathrm{t}_{\mathrm{CLCL}}-28$	ns
tLLDV	ALE Low to Valid Data In		517		$8 \mathrm{t}_{\text {CLCL- }} 150$	ns
$\mathrm{t}_{\text {AVDV }}$	Address to Valid Data In		585		$9 \mathrm{t}_{\text {CLCL- }} 165$	ns
$t_{\text {LLWL }}$	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	$3 \mathrm{t}_{\mathrm{CLCL}}-50$	$3 \mathrm{t}_{\text {CLCL }}+50$	ns
$\mathrm{t}_{\text {AVWL }}$	Address to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		$4 \mathrm{t}_{\text {CLCL- }} 75$		ns
$\mathrm{t}_{\text {QVWX }}$	Data Valid to $\overline{\mathrm{WR}}$ Transition	23		$\mathrm{t}_{\text {CLCL }}-30$		ns
$\mathrm{t}_{\text {QVWH }}$	Data Valid to $\overline{\text { WR High }}$	433		$7 \mathrm{t}_{\text {CLCLL }}-130$		ns
$\mathrm{t}_{\text {WHQX }}$	Data Hold After $\overline{W R}$	33		$\mathrm{t}_{\text {CLCL- }} \mathbf{2 5}$		ns
$t_{\text {RLAZ }}$	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
$\mathrm{t}_{\text {WHLH }}$	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	43	123	$\mathrm{t}_{\mathrm{CLCL}}-25$	$\mathrm{t}_{\text {CLCL }}+25$	ns

External Program Memory Read Cycle

External Data Memory Read Cycle

External Data Memory Write Cycle

External Clock Drive Waveforms

External Clock Drive

Symbol	Parameter	Min	Max	Units
$1 / t_{\text {CLCL }}$	Oscillator Frequency	0	33	MHz
$\mathrm{t}_{\mathrm{CLCL}}$	Clock Period	30	ns	
$\mathrm{t}_{\mathrm{CHCX}}$	High Time	12	ns	
$\mathrm{t}_{\mathrm{CLCX}}$	Low Time	12	5	ns
$\mathrm{t}_{\mathrm{CLCH}}$	Rise Time		5	ns
$\mathrm{t}_{\mathrm{CHCL}}$	Fall Time		ns	

Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ to 5.5 V and Load Capacitance $=80 \mathrm{pF}$.

Symbol	Parameter	12 MHz Osc		Variable Oscillator		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{XLXL}}$	Serial Port Clock Cycle Time	1.0		$12 \mathrm{t}_{\text {CLCL }}$		$\mu \mathrm{s}$
$\mathrm{t}_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	700		$10 \mathrm{t}_{\text {CLCL }}-133$		ns
$\mathrm{t}_{\mathrm{XHQX}}$	Output Data Hold After Clock Rising Edge	50		$2 \mathrm{t}_{\mathrm{CLCL}}-80$		ns
$\mathrm{t}_{\text {XHDX }}$	Input Data Hold After Clock Rising Edge	0		0		ns
$\mathrm{t}_{\mathrm{XHDV}}$	Clock Rising Edge to Input Data Valid		700		$10^{\text {CLCL }}$-133	ns

Shift Register Mode Timing Waveforms

AC Testing Input/Output Waveforms ${ }^{(1)}$

Note: 1. $A C$ Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a logic 1 and 0.45 V for a logic 0 . Timing measurements are made at $\mathrm{V}_{\mathrm{IH}} \mathrm{min}$. for a logic 1 and V_{IL} max. for a logic 0 .

Float Waveforms ${ }^{(1)}$

Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs.

Ordering Information

Speed $(M H z)$	Power Supply	Ordering Code	Package	Operation Range
24	4.0 V to 5.5V	AT89S52-24AC	44 A	Commercial
		AT89S52-24JC	44 J	
		AT89S52-24PC	40 P 6	$\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		AT89S52-24AI	44 A	Industrial
		AT89S52-24JI	44 J	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
		AT89S52-24PI	40 P 6	
33	4.5 V to 5.5 V	AT89S52-33AC	44 A	Commercial
		AT89S52-33JC	44 J	$\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		AT89S52-33PC	40 P 6	

Package Type	
44A	44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)

Packaging Information

Atmel Headquarters
Corporate Headquarters 2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600
Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
$\mathrm{CH}-1705$ Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033 Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Product Operations

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn
Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 7131672594
FAX (49) 7131672423

Atmel Nantes

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0240181818
FAX (33) 0240181960
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001
Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

	Fax-on-Demand	e-mail
North America:	literature@atmel.com	
	$1-(800)$ 292-8635	Web Site
	International:	htt://www.atmel.com
	$1-(408) 441-0732$	
		BBS
$1-(408) 436-4309$		

© Atmel Corporation 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL ${ }^{\circledR}$ is the registered trademark of Atmel.

MCS-51 ${ }^{\circledR}$ is the registered trademark of Intel Corporation. Terms and product names in this document may be trademarks of others.

ADC0802, ADC0803 ADC0804

8-Bit, MicroprocessorCompatible, A/D Converters

Features

- 80C48 and 80C80/85 Bus Compatible - No Interfacing Logic Required
- Conversion Time < 100 s
- Easy Interface to Most Microprocessors
- Will Operate in a "Stand Alone" Mode
- Differential Analog Voltage Inputs
- Works with Bandgap Voltage References
- TTL Compatible Inputs and Outputs
- On-Chip Clock Generator
- OV to 5V Analog Voltage Input Range (Single + 5V Supply)
- No Zero-Adjust Required

Description

The ADC0802 family are CMOS 8-Bit, successive-approximation A/D converters which use a modified potentiometric ladder and are designed to operate with the 8080A control bus via three-state outputs. These converters appear to the processor as memory locations or I/O ports, and hence no interfacing logic is required.

The differential analog voltage input has good common-mode-rejection and permits offsetting the analog zero-inputvoltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Ordering Information

PART NUMBER	ERROR	EXTERNAL CONDITIONS	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO
ADC0802LCN	$\pm 1 / 2$ LSB	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$ ((No Adjustments)	0 to 70	20 Ld PDIP	E20.3
ADC0802LCD	$\pm{ }^{3} / 4$ LSB		-40 to 85	20 Ld CERDIP	F20.3
ADC0802LD	± 1 LSB		-55 to 125	20 Ld CERDIP	F20.3
ADC0803LCN	$\pm 1 / 2$ LSB	$\mathrm{V}_{\text {REF }}$ /2 Adjusted for Correct Full Scale Reading	0 to 70	20 Ld PDIP	E20.3
ADC0803LCD	$\pm 3 / 4$ LSB		-40 to 85	20 Ld CERDIP	F20.3
ADC0803LCWM	± 1 LSB		-40 to 85	20 Ld SOIC	M20.3
ADC0803LD	$\pm 1 \mathrm{LSB}$		-55 to 125	20 Ld CERDIP	F20.3
ADC0804LCN	± 1 LSB	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$ (No Adjustments)	0 to 70	20 Ld PDIP	E20.3
ADC0804LCD	± 1 LSB		-40 to 85	20 Ld CERDIP	F20.3
ADC0804LCWM	± 1 LSB		-40 to 85	20 Ld SOIC	M20.3

Pinout

Typical Application Schematic

Functional Diagram

Absolute Maximum Ratings	
Supply Voltage	6.5V
Voltage at Any Input	V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Operating Conditions	
Temperature Range	
ADC0802/03LD.	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
ADC0802/03/04LCD .	.$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ADC0802/03/04LCN	. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ADC0803/04LCWM	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	125	N/A
CERDIP Package	80	20
SOIC Package	120	N/A
Maximum Junction Temperature		
Hermetic Package		$175{ }^{\circ} \mathrm{C}$
Plastic Package		$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range		C to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Solderin (SOIC - Lead Tips Only)		$300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications (Notes 1, 7)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CONVERTER SPECIFICATIONS $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\text {REF } / 2}=2.500 \mathrm{~V}$	-	-	$\pm 1 / 2$	LSB
ADC0803	$\mathrm{V}_{\text {REF }} / 2$ Adjusted for Correct Full Scale Reading	-	-	$\pm 1 / 2$	LSB
ADC0804	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}$	-	-	± 1	LSB
$\mathrm{V}_{\text {REF } / 2 ~ I n p u t ~ R e s i s t a n c e ~}^{\text {a }}$	Input Resistance at Pin 9	1.0	1.3	-	k Ω
Analog Input Voltage Range	(Note 2)	GND-0.05	-	$(\mathrm{V}+$) +0.05	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	V+= $5 \mathrm{~V} \pm 10 \%$ Over Allowed Input Voltage Range	-	$\pm{ }^{1 / 16}$	$\pm 1 / 8$	LSB
CONVERTER SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and f CLK $=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\text {REF } / 2}=2.500 \mathrm{~V}$	-	-	$\pm 1 / 2$	LSB
ADC0803	$\mathrm{V}_{\text {REF/ }}$ Adjusted for Correct Full Scale Reading	-	-	$\pm 1 / 2$	LSB
ADC0804	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}$	-	-	± 1	LSB
$\mathrm{V}_{\text {REF/2 }}$ Input Resistance	Input Resistance at Pin 9	1.0	1.3	-	k Ω
Analog Input Voltage Range	(Note 2)	GND-0.05	-	$(\mathrm{V}+$) + 0.05	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 8$	$\pm{ }^{1 / 4}$	LSB
Power Supply Sensitivity	V+ = 5V $\pm 10 \%$ Over Allowed Input Voltage Range	-	$\pm 1 / 16$	$\pm 1 / 8$	LSB
CONVERTER SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V},-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$	-	-	$\pm 3 / 4$	LSB
ADC0803	$\mathrm{V}_{\text {REF }} / 2$ Adjusted for Correct Full Scale Reading	-	-	$\pm 3 / 4$	LSB
ADC0804	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}$	-	-	± 1	LSB
V ${ }_{\text {REF } / 2 ~ I n p u t ~ R e s i s t a n c e ~}$	Input Resistance at Pin 9	1.0	1.3	-	k Ω
Analog Input Voltage Range	(Note 2)	GND-0.05	-	$(\mathrm{V}+)^{+} 0.05$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 8$	$\pm{ }^{1 / 4}$	LSB
Power Supply Sensitivity	V+=5V $\pm 10 \%$ Over Allowed Input Voltage Range	-	$\pm 1 / 16$	$\pm 1 / 8$	LSB

Electrical Specifications (Notes 1, 7) (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CONVERTER SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V},-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and f CLK $=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$	-	-	± 1	LSB
ADC0803	$\mathrm{V}_{\text {REF/ }}$ Adjusted for Correct Full Scale Reading	-	-	± 1	LSB
$\mathrm{V}_{\text {REF }}$ /2 Input Resistance	Input Resistance at Pin 9	1.0	1.3	-	k Ω
Analog Input Voltage Range	(Note 2)	GND-0.05	-	(V+) + 0.05	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 8$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	V+= $5 \mathrm{~V} \pm 10 \%$ Over Allowed Input Voltage Range	-	$\pm 1 / 8$	$\pm 1 / 4$	LSB
AC TIMING SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified					
Clock Frequency, f flk	$\mathrm{V}_{+}=6 \mathrm{~V}$ (Note 3)	100	640	1280	kHz
	$\mathrm{V}+=5 \mathrm{~V}$	100	640	800	kHz
Clock Periods per Conversion (Note 4), tconv		62	-	73	Clocks/Conv
Conversion Rate In Free-Running Mode, CR	$\overline{\mathrm{NTR}}$ tied to $\overline{\mathrm{WR}}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}$, $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$	-	-	8888	Conv/s
Width of WR Input (Start Pulse Width), tw(WR)I	$\overline{\mathrm{CS}}=0 \mathrm{~V}$ (Note 5)	100	-	-	ns
Access Time (Delay from Falling Edge of RD to Output Data Valid), $t_{A C C}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Use Bus Driver IC for Larger C_{L})	-	135	200	ns
Three-State Control (Delay from Rising Edge of RD to HI-Z State), $\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ (See Three-State Test Circuits)	-	125	250	ns
Delay from Falling Edge of WR to Reset of INTR, t_{WI}, t_{RI}		-	300	450	ns
Input Capacitance of Logic Control Inputs, C_{IN}		-	5	-	pF
Three-State Output Capacitance (Data Buffers), COUT		-	5	-	pF
DC DIGITAL LEVELS AND DC SPECIFICATIONS $\mathrm{V}_{+}=5 \mathrm{~V}$, and $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, Unless Otherwise Specified					
CONTROL INPUTS (Note 6)					
Logic "1" Input Voltage (Except Pin 4 CLK IN), VINH	$\mathrm{V}+=5.25 \mathrm{~V}$	2.0	-	V+	V
Logic "0" Input Voltage (Except Pin 4 CLK IN), $\mathrm{V}_{\text {INL }}$	$\mathrm{V}+=4.75 \mathrm{~V}$	-	-	0.8	V
CLK IN (Pin 4) Positive Going Threshold Voltage, V+CLK		2.7	3.1	3.5	V
CLK IN (Pin 4) Negative Going Threshold Voltage, V-cLK		1.5	1.8	2.1	V
CLK IN (Pin 4) Hysteresis, V_{H}		0.6	1.3	2.0	V
Logic "1" Input Current (All Inputs), $\mathrm{I}_{\mathrm{INHI}}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	-	0.005	1	$\mu \mathrm{A}$
Logic "0" Input Current (All Inputs), I INLO	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1	-0.005	-	$\mu \mathrm{A}$
Supply Current (Includes Ladder Current), I+	$\begin{aligned} & \mathrm{fCLK}=640 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { and CS }=\mathrm{HI} \end{aligned}$	-	1.3	2.5	mA
DATA OUTPUTS AND $\overline{\text { INTR }}$					
Logic "0" Output Voltage, $\mathrm{V}_{\text {OL }}$	$\mathrm{l}_{\mathrm{O}}=1.6 \mathrm{~mA}, \mathrm{~V}+=4.75 \mathrm{~V}$	-	-	0.4	V

Electrical Specifications (Notes 1, 7) (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Logic "1" Output Voltage, V_{OH}	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}+=4.75 \mathrm{~V}$	2.4	-	-	V
Three-State Disabled Output Leakage (All Data Buffers), L LO	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	-3	-	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$	-	-	3	$\mu \mathrm{~A}$
Output Short Circuit Current, ISOURCE	$\mathrm{V}_{\mathrm{OUT}}$ Short to $\mathrm{Gnd}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.5	6	-	mA
Output Short Circuit Current, ISINK	$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}+\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9.0	16	-	mA

NOTES:

1. All voltages are measured with respect to GND, unless otherwise specified. The separate AGND point should always be wired to the DGND, being careful to avoid ground loops.
2. For $\mathrm{V}_{\operatorname{IN}(-)} \geq \mathrm{V}_{\operatorname{IN}(+)}$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V+ supply. Be careful, during testing at low V + levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct - especially at elevated temperatures, and cause errors for analog inputs near full scale. As long as the analog $\mathrm{V}_{\mathbb{N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range will therefore require a minimum supply voltage of 4.950 V over temperature variations, initial tolerance and loading.
3. With $\mathrm{V}_{+}=6 \mathrm{~V}$, the digital logic interfaces are no longer TTL compatible.
4. With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process.
5. The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input so that timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see Timing Diagrams).
6. CLK IN (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately.
7. None of these A / Ds requires a zero-adjust. However, if an all zero code is desired for an analog input other than OV , or if a narrow full scale span exists (for example: 0.5 V to 4 V full scale) the $\mathrm{V}_{\mathbb{I N}(-)}$ input can be adjusted to achieve this. See the Zero Error description in this data sheet.

Timing Waveforms

FIGURE 1A. $\mathrm{t}_{1 \mathrm{H}}$

FIGURE 1C. $\mathrm{t}_{0 \mathrm{H}}$

FIGURE 1B. $\mathrm{t}_{1 \mathrm{H}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

FIGURE 1D. $\mathrm{t}_{\mathrm{OH}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

FIGURE 1. THREE-STATE CIRCUITS AND WAVEFORMS

Typical Performance Curves

FIGURE 2. LOGIC INPUT THRESHOLD VOLTAGE vs SUPPLY VOLTAGE

FIGURE 4. CLK IN SCHMITT TRIP LEVELS vs SUPPLY VOLTAGE

FIGURE 6. FULL SCALE ERROR vs $f_{\text {CLK }}$

FIGURE 3. DELAY FROM FALLING EDGE OF $\overline{R D}$ TO OUTPUT DATA VALID vs LOAD CAPACITANCE

FIGURE 5. $\mathrm{f}_{\mathrm{CLK}}$ vs CLOCK CAPACITOR

FIGURE 7. EFFECT OF UNADJUSTED OFFSET ERROR

Typical Performance Curves (Continued)

FIGURE 8. OUTPUT CURRENT vs TEMPERATURE

FIGURE 9. POWER SUPPLY CURRENT vs TEMPERATURE

Timing Diagrams

FIGURE 10A. START CONVERSION

FIGURE 10B. OUTPUT ENABLE AND RESET INTR

FIGURE 11B. ACCURACY $= \pm 1 / 2$ LSB
FIGURE 11. CLARIFYING THE ERROR SPECS OF AN A/D CONVERTER

Understanding A/D Error Specs

A perfect A / D transfer characteristic (staircase wave-form) is shown in Figure 11A. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the $\mathrm{V}_{\mathrm{REF}} / 2 \mathrm{pin}$). The digital output codes which correspond to these inputs are shown as $\mathrm{D}-1, \mathrm{D}$, and $D+1$. For the perfect A / D, not only will center-value ($A-1$, A, $A+1, \ldots$.) analog inputs produce the correct output digital codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each centervalue. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages which extend $\pm 1 / 2$ LSB from the ideal center-values. Each tread (the range of analog input voltage which provides the same digital output code) is therefore 1 LSB wide.
The error curve of Figure 11B shows the worst case transfer function for the ADC0802. Here the specification guarantees that if we apply an analog input equal to the LSB analog voltage center-value, the A/D will produce the correct digital code.
Next to each transfer function is shown the corresponding error plot. Notice that the error includes the quantization uncertainty of the A / D. For example, the error at point 1 of Figure 11 A is $+\frac{1}{2}$ LSB because the digital code appeared $1 / 2 \mathrm{LSB}$ in advance of the center-value of the tread. The error plots always have a
constant negative slope and the abrupt upside steps are always 1 LSB in magnitude, unless the device has missing codes.

Detailed Description

The functional diagram of the ADC0802 series of A / D converters operates on the successive approximation principle (see Application Notes AN016 and AN020 for a more detailed description of this principle). Analog switches are closed sequentially by successive-approximation logic until the analog differential input voltage $\left[\mathrm{V}_{\mathrm{IN}(+)}-\mathrm{V}_{\mathrm{IN}(-)}\right]$ matches a voltage derived from a tapped resistor string across the reference voltage. The most significant bit is tested first and after 8 comparisons (64 clock cycles), an 8 -bit binary code (1111 1111 = full scale) is transferred to an output latch.
The normal operation proceeds as follows. On the high-to-low transition of the WR input, the internal SAR latches and the shift-register stages are reset, and the INTR output will be set high. As long as the CS input and WR input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition. After the requisite number of clock pulses to complete the conversion, the INTR pin will make a high-to-low transition. This can be used to interrupt a processor, or otherwise signal the availability of a new conversion. A RD operation (with CS low) will clear the INTR line high again.

The device may be operated in the free-running mode by connecting INTR to the WR input with CS $=0$. To ensure start-up under all possible conditions, an external WR pulse is required during the first power-up cycle. A conversion-in-process can be interrupted by issuing a second start command.

Digital Operation

The converter is started by having CS and WR simultaneously low. This sets the start flip-flop (F/F) and the resulting "1" level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flip-flop, DFF1, which is at the input end of the 8-bit shift register. Internal clock signals then transfer this "1" to the Q output of DFF1. The AND gate, G1, combines this "1" output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either WR or CS is a "1"), the start F/F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would be at a " 1 " level) and the 8 -bit shift register would continue to be held in the reset mode. This allows for asynchronous or wide CS and WR signals.
After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR operation) it appears as the input to DFF2. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the Three-State output latches. When DFF2 is subsequently clocked, the \bar{Q} output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR output signal.
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the threestate output latches will be enabled to provide the 8 -bit digital outputs.

Digital Control Inputs

The digital control inputs (CS, RD, and WR) meet standard TTL logic voltage levels. These signals are essentially equivalent to the standard A/D Start and Output Enable control signals, and are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the CS input (pin 1) can be grounded and the standard A/D Start function obtained by an active low pulse at the WR input (pin 3). The Output Enable function is achieved by an active low pulse at the RD input (pin 2).

Analog Operation

The analog comparisons are performed by a capacitive charge summing circuit. Three capacitors (with precise ratioed values) share a common node with the input to an autozeroed comparator. The input capacitor is switched between $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$, while two ratioed reference capacitors are switched between taps on the reference voltage divider string. The net charge corresponds to the weighted difference between the input and the current total value set by the successive approximation register. A correction is made to offset the comparison by $1 / 2$ LSB (see Figure 11A).

Analog Differential Voltage Inputs and Common-Mode Rejection

This A/D gains considerable applications flexibility from the analog differential voltage input. The $\mathrm{V}_{\mathbb{I N}(-)}$ input (pin 7) can be used
to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, common-mode noise can be reduced by use of the differential input.
The time interval between sampling $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$ is $4 \frac{1}{2}$ clock periods. The maximum error voltage due to this slight time difference between the input voltage samples is given by:
$\Delta \mathrm{V}_{\mathrm{E}}(\mathrm{MAX})=\left(\mathrm{V}_{\text {PEAK }}\right)\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right)\left[\frac{4.5}{\mathrm{f}_{\mathrm{CLK}}}\right]$
where:
ΔV_{E} is the error voltage due to sampling delay,
$V_{\text {PEAK }}$ is the peak value of the common-mode voltage,
${ }^{\mathrm{f}} \mathrm{CM}$ is the common-mode frequency.
For example, with a 60 Hz common-mode frequency, f_{CM}, and a 640 kHz A/D clock, f CLK, keeping this error to $1 / 4 \mathrm{LSB}$ ($\sim 5 \mathrm{mV}$) would allow a common-mode voltage, $\mathrm{V}_{\text {PEAK, }}$, given by:
$V_{\text {PEAK }}=\frac{\left.\left[\Delta \mathrm{V}_{\mathrm{E}(\mathrm{MAX})(\mathrm{f}} \mathrm{CLK}\right)\right]}{\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right)(4.5)}$,
or
$\mathrm{V}_{\text {PEAK }}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)} \cong 1.9 \mathrm{~V}$.
The allowed range of analog input voltage usually places more severe restrictions on input common-mode voltage levels than this.

An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by making use of the differential input (see Reference Voltage Span Adjust).

Analog Input Current

The internal switching action causes displacement currents to flow at the analog inputs. The voltage on the on-chip capacitance to ground is switched through the analog differential input voltage, resulting in proportional currents entering the $\mathrm{V}_{\mathrm{IN}(+)}$ input and leaving the $\mathrm{V}_{\mathrm{IN}(-)}$ input. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not inherently cause errors as the onchip comparator is strobed at the end of the clock perlod.

Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathbb{I N}(+)}$ input voltage at full scale. For a 640 kHz clock frequency with the $\mathrm{V}_{\mathrm{IN}}(+)$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $\mathbf{V}_{\text {REF }} / \mathbf{2}$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the effects of the voltage drop across this input resistance, due to the average value of the input current, can be compensated by a full scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage at a constant conversion rate.

Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used will not cause errors since the input currents settle out prior to the comparison time. If a lowpass filter is required in the system, use a low-value series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low-pass filter. For low-source-resistance applications ($\leq 1 \mathrm{k} \Omega$), a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will minimize EMI due to the series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor (both the R and C are placed outside the feedback loop) from the output of an op amp, if used.

Stray Pickup

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize stray signal pickup (EMI). Both EMI and undesired digital-clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired signal pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate this pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the A/D (see Analog Input Current). This scale error depends on both a large source resistance and the use of an input bypass capacitor. This error can be compensated by a full scale adjustment of the A/D (see Full Scale Adjustment) with the source resistance and input bypass capacitor in place, and the desired conversion rate.

Reference Voltage Span Adjust

For maximum application flexibility, these A/Ds have been designed to accommodate a $5 \mathrm{~V}, 2.5 \mathrm{~V}$ or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 12.
Notice that the reference voltage for the IC is either $1 / 2$ of the voltage which is applied to the V_{+}supply pin, or is equal to the voltage which is externally forced at the $\mathrm{V}_{\mathrm{REF}} / 2$ pin. This allows for a pseudo-ratiometric voltage reference using, for the $\mathrm{V}+$ supply, a 5 V reference voltage. Alternatively, a voltage less than 2.5 V can be applied to the $\mathrm{V}_{\mathrm{REF}} / 2$ input. The internal gain to the $\mathrm{V}_{\mathrm{REF}} / 2$ input is 2 to allow this factor of 2 reduction in the reference voltage.
Such an adjusted reference voltage can accommodate a reduced span or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from 0.5 V to 3.5 V , instead of 0 V to 5 V , the span would be 3 V . With 0.5 V applied to the $\mathrm{V}_{\mathrm{IN}(-)}$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or 1.5 V . The A/D now will encode the $\mathrm{V}_{\mathrm{IN}(+)}$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the 3.5 V input corresponding to full scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range. The requisite connections are shown in Figure 13. For expanded scale inputs, the circuits of Figures 14 and 15 can be used.

FIGURE 12. THE VREFERENCE DESIGN ON THE IC

FIGURE 13. OFFSETTING THE ZERO OF THE ADC0802 AND PERFORMING AN INPUT RANGE (SPAN) ADJUSTMENT

FIGURE 14. HANDLING $\pm 10 \mathrm{~V}$ ANALOG INPUT RANGE

FIGURE 15. HANDLING ± 5 V ANALOG INPUT RANGE

Reference Accuracy Requirements

The converter can be operated in a pseudo-ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. In absolute conversion applicatlons, both the initial value and the temperature stability of the reference voltage are important accuracy factors in the operation of the A/D converter. For $\mathrm{V}_{\mathrm{REF}} / 2$ voltages of 2.5 V nominal value, initial errors of $\pm 10 \mathrm{mV}$ will cause conversion errors of ± 1 LSB due to the gain of 2 of the $\mathrm{V}_{\text {REF }} / 2$ input. In reduced span applications, the initial value and the stability of the $\mathrm{V}_{\mathrm{REF}} / 2$ input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\mathrm{REF}} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.
In general, the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full scale errors in the A/D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive.

Zero Error

The zero of the A / D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D \mathrm{~V}_{\mathrm{IN}(-)}$ input at this $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ value (see Applications section). This utilizes the differential mode operation of the A/D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}(-)}$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}(+)}$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value ($1 / 2$ LSB $=9.8 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}$).

Full Scale Adjust

The full scale adjustment can be made by applying a differential input voltage which is $1 \frac{1}{2}$ LSB down from the desired analog full scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\mathrm{REF}} / 2$ input (pin 9) for a digital output code which is just changing from 11111110 to 11111111. When offsetting the zero and using a span-adjusted $\mathrm{V}_{\text {REF }} / 2$ voltage, the full scale adjustment is made by inputting $\mathrm{V}_{\mathrm{MIN}}$ to the $\mathrm{V}_{\mathrm{IN}(-)}$ input of the A / D and applying a voltage to the $\mathrm{V}_{\mathrm{IN}(+)}$ input which is given by:
$\mathrm{V}_{\mathrm{IN}(+)^{\mathrm{f}}} \mathrm{SADJ}=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]$,
where:
$\mathrm{V}_{\mathrm{MAX}}=$ the high end of the analog input range,
and
$\mathrm{V}_{\mathrm{MIN}}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)

Clocking Option

The clock for the A/D can be derived from an external source such as the CPU clock or an external RC network can be added to provide self-clocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 16.

FIGURE 16. SELF-CLOCKING THE A/D

Heavy capacitive or DC loading of the CLK R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to $7 \mathrm{~A} / \mathrm{D}$ converter clock inputs from a single CLK R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the CLK R pin (do not use a standard TTL buffer).

Restart During a Conversion

If the A / D is restarted ($\overline{C S}$ and $\overline{W R}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in progress is not completed. The data from the previous conversion remain in this latch.

Continuous Conversions

In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{\mathrm{WR}}$ input is tied to the INTR output. This WR and INTR node should be momentarily forced to logic low following a powerup cycle to insure circuit operation. See Figure 17 for details.

FIGURE 17. FREE-RUNNING CONNECTION

Driving the Data Bus

This CMOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circultry, which is tied to the data bus, will add to the total capacitive loading, even in threestate (high-impedance mode). Back plane busing also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see Typical Performance Curves).
At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock-extending circuits (6800).
Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be three-state buffers (low power Schottky is recommended, such as the 74LS240 series) or special higher-drive-current products which are designed as bus drivers. High-current bipolar bus drivers with PNP inputs are recommended.

Power Supplies

Noise spikes on the V+ supply line can cause conversion errors as the comparator will respond to this noise. A low-inductance tantalum filter capacitor should be used close to the converter $\mathrm{V}+\mathrm{pin}$, and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the $\mathrm{V}+$ supply. An ICL7663 can be used to regulate such a supply from an input as low as 5.2 V .

Wiring and Hook-Up Precautions

Standard digital wire-wrap sockets are not satisfactory for breadboarding with this A/D converter. Sockets on PC boards can be used. All logic signal wires and leads should be grouped and kept as far away as possible from the analog
signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup; therefore, shielded leads may be necessary in many applications.
A single-point analog ground should be used which is separate from the logic ground points. The power supply bypass capacitor and the self-clocklng capacitor (if used) should both be returned to digital ground. Any $\mathrm{V}_{\mathrm{REF}} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the A/D converter. Zero errors in excess of $1 / 4$ LSB can usually be traced to improper board layout and wiring (see Zero Error for measurement). Further information can be found in Application Note AN018.

Testing the A/D Converter

There are many degrees of complexity associated with testing an A / D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 18.
For ease of testing, the $\mathrm{V}_{\mathrm{REF}} / 2$ (pin 9) should be supplied with 2.560 V and a $\mathrm{V}+$ supply voltage of 5.12 V should be used. This provides an LSB value of 20 mV .
If a full scale adjustment is to be made, an analog input voltage of $5.090 \mathrm{~V}\left(5.120-1 \frac{1}{2}\right.$ LSB) should be applied to the $\mathrm{V}_{\operatorname{IN}(+)}$ pin with the $\mathrm{V}_{\mathrm{IN}(-)}$ pin grounded. The value of the $\mathrm{V}_{\mathrm{REF}} / 2$ input voltage should be adjusted until the digital output code is just changing from 11111110 to 1111 1111. This value of $\mathrm{V}_{\mathrm{REF}} / 2$ should then be used for all the tests.
The digital-output LED display can be decoded by dividing the 8 bits into 2 hex characters, one with the 4 most-significant bits (MS) and one with the 4 least-significant bits (LS). The output is then interpreted as a sum of fractions times the full scale voltage:
$\mathrm{V}_{\text {OUT }}=\left(\frac{\mathrm{MS}}{16}+\frac{\mathrm{LS}}{256}\right)(5.12) \mathrm{V}$.

FIGURE 18. BASIC TESTER FOR THE A/D
For example, for an output LED display of 1011 0110, the MS character is hex B (decimal 11) and the LS character is hex (and decimal) 6, so:
$\mathrm{V}_{\text {OUT }}=\left(\frac{11}{16}+\frac{6}{256}\right)(5.12)=3.64 \mathrm{~V}$.

Figures 19 and 20 show more sophisticated test circuits.

FIGURE 19. A/D TESTER WITH ANALOG ERROR OUTPUT. THIS CIRCUIT CAN BE USED TO GENERATE "ERROR PLOTS" OF FIGURE 11.

FIGURE 20. BASIC "DIGITAL" A/D TESTER

Typical Applications

Interfacing 8080/85 or Z-80 Microprocessors

This converter has been designed to directly interface with 8080/85 or Z-80 Microprocessors. The three-state output capability of the A/D eliminates the need for a peripheral interface device, although address decoding is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter. The A / D can be mapped into memory space (using standard mem-ory-address decoding for $\overline{\mathrm{CS}}$ and the $\overline{\mathrm{MEMR}}$ and $\overline{\mathrm{MEMW}}$ strobes) or it can be controlled as an I/O device by using the $\overline{\mathrm{I} / \mathrm{OR}}$ and $\overline{/ / O W}$ strobes and decoding the address bits $\mathrm{AO} \rightarrow$ A7 (or address bits A8 \rightarrow A15, since they will contain the same 8-bit address information) to obtain the $\overline{\mathrm{CS}}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8-bit address decoder, but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A/D should be mapped into memory space. See AN020 for more discussion of memory-mapped vs I/O-mapped interfaces. An example of an A/D in I/O space is shown in Figure 21.
The standard control-bus signals of the 8080 ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{W R}$) can be directly wired to the digital control inputs of the A/D, since the bus timing requirements, to allow both starting the converter, and outputting the data onto the data bus, are met. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100pF.
It is useful to note that in systems where the A/D converter is 1 of 8 or fewer I/O-mapped devices, no address-decoding circuitry is necessary. Each of the 8 address bits (A0 to A7) can be directly used as $\overline{\mathrm{CS}}$ inputs, one for each I/O device.

Interfacing the Z-80 and $\mathbf{8 0 8 5}$

The Z-80 and 8085 control buses are slightly different from that of the 8080. General $\overline{R D}$ and $\overline{W R}$ strobes are provided and separate memory request, $\overline{M R E Q}$, and I/O request, IORQ, signals have to be combined with the generalized strobes to provide the appropriate signals. An advantage of operating the A / D in I/O space with the $\mathrm{Z}-80$ is that the CPU will automatically insert one wait state (the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 22. By using MREQ in place of $\overline{\mathrm{IORQ}}$, a memory-mapped configuration results.
Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.
The 8085 also provides a generalized $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe, with an IO/M line to distinguish I/O and memory requests. The circuit of Figure 22 can again be used, with IO/M in place of IORQ for a memory-mapped interface, and an extra inverter (or the logic equivalent) to provide $\overline{\mathrm{O}} / \mathrm{M}$ for an I/O-mapped connection.
Interfacing 6800 Microprocessor Derivatives (6502, etc.)
The control bus for the 6800 microprocessor derivatives does not use the RD and WR strobe signals. Instead it employs a single R/W line and additional timing, if needed, can be derived from the $\phi 2$ clock. All I/O devices are memory-mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 23 shows an interface schematic where the A / D is memory-mapped in the 6800 system. For simplicity, the CS decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an already decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21 . This can be tied directly to the CS pin of the A/D, provided that no other devices are addressed at HEX ADDR: 4XXX or 5XXX.
In Figure 24 the ADC0802 series is interfaced to the MC6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter (PIA). Here the CS pin of the A/D is grounded since the PIA is already memory-mapped in the MC6800 system and no CS decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D RD pin can be grounded.

Application Notes

NOTE \#	DESCRIPTION	AnswerFAX DOC. \#
AN016	"Selecting A/D Converters"	9016
AN018	"Do's and Don'ts of Applying A/D Converters"	9018
AN020	"A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing"	9020
AN030	"The ICL7104 - A Binary Output A/D Converter for Microprocessors"	9030

NOTE: Pin numbers for 8228 System Controller: Others are 8080A.
FIGURE 21. ADC0802 TO 8080A CPU INTERFACE

FIGURE 22. MAPPING THE A/D AS AN I/O DEVICE FOR USE WITH THE Z-80 CPU

FIGURE 24. ADC0802 TO MC6820 PIA INTERFACE

Die Characteristics

DIE DIMENSIONS:
(101 mils $\times 93$ mils) $\times 525 \mu \mathrm{~m} \times 25 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 k \AA ̊ \pm 1 k \AA$

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: $8 \mathrm{k} \AA$
Silox Thickness: 7k \AA

Metallization Mask Layout

