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Abstract—Presently, wireless capsule endoscopy (WCE) is the sole
technology for inspecting the human gastrointestinal (GI) tract for
diseases painlessly and in a non-invasive way. For the further
development of WCE, the main concern is the development of a high-
speed telemetry system that is capable of transmitting high-resolution
images at a higher frame rate, which is also a concern in the use of
conventional endoscopy. A vital task for such a high-speed telemetry
system is to be able to determine the path loss and how it varies in a
radio channel in order to calculate the proper link budget. The hostile
nature of the human body’s channel and the complex anatomical
structure of the GI tract cause remarkable variations in path loss at
different frequencies of the system as well as at capsule locations that
have high impacts on the calculation of the link budget. This paper
presents the path loss and its variation in terms of system frequency
and location of the capsule. Along with the guideline about the
optimum system frequency for WCE, we present the difference between
the maximum and minimum path loss at different anatomical regions,
which is the most important information in the link-margin setup for
highly efficient telemetry systems in next-generation capsules. In order
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to investigate the path loss in the body’s channel, a heterogeneous
human body model was used, which is more comparable to the human
body than a homogenous model. The finite integration technique (FIT)
in Computer Simulation Technology’s (CST’s) Microwave Studio was
used in the simulation. The path loss was analyzed in the frequency
range of 100MHz to 2450 MHz. The path loss was found to be
saliently lower at frequencies below 900 MHz. The smallest loss was
found around the frequency of 450 MHz, where the variation of path
loss throughout the GI tract was 29 dB, with a minimum of −9 dB
and a maximum of −38 dB. However, at 900 MHz, this variation was
observed to be 38 dB, with a minimum of −10 dB and a maximum
of −48 dB. For most positions of the capsule, the path loss increased
rapidly after 900 MHz, reaching its peak at frequencies in the range of
1800MHz to 2100 MHz. During examination of the lower esophageal
region, the maximum peak observed was −84 dB at a frequency of
1760MHz. The path loss was comparatively higher during examination
of anatomically-complex regions, such as the upper intestine and the
lower esophagus as compared to the less complex stomach and upper
esophagus areas.

1. INTRODUCTION

The invention of wireless capsule endoscopy (WCE) [1] brought about
the greatest revolution in the technology used to diagnose GI problems,
because it eliminated the acute pain and discomfort associated with
the use of conventional push endoscopy to examine the GI tract. In
this novel system, a pill-sized electronic capsule that contains image
acquisition and telemetry systems, along with a battery as the power
source [2], passes through the patient’s GI tract and transmit real-time
images to the lead antenna that is connected to the image-receiving
box, which is outside of the body [3].

The main issues that must be overcome if there is to be
wider clinical applications of WCE are poor-quality images, a low
image-transmission rate, and the localization of the capsule. High-
quality transmission of images requires an efficient telemetry system,
acceptable condition of the channel (between the capsule and the
receiving antenna), and consideration of the system-link budget. The
amount of signal attenuation during radio propagation, i.e., path loss,
characterizes the condition of the channel [4–6]. In this regard, the
system’s frequency and the calculation of the proper link budget have
greater influence on the system’s performance [7–9]. Unfortunately,
most of the research related to the WCE’s telemetry system has
conducted with the random selection of the system’s frequency without
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proper consideration of the propagation characteristics of the human
body on the system’s frequency [10]. In light of that, the following
upgrades to the capsule-endoscopy system have been proposed: a low-
power, 3–5-GHz,ultra-wideband transceiver [11]; a 15-Mbps, 900-MHz
ASK transmitter [12]; a 2.4-GHz, high-data-rate transceiver [13]; a
0.5-GHz, high-speed, high-efficiency system [14]; a 1.4-GHz conformal,
ingestible, capsule antenna [15]; and a 2.4-GHz, peanut-shaped, printed
antenna for the bio-telemetric tablet [16].

However, the human body is a complex composite of many
different tissues that are highly-dependent on frequency. The
conductivity and relative permittivity of these tissues vary with
frequency [17–19] and age group [20, 21], resulting in propagation
characteristics that differ according to the anatomical region, e.g.,
esophagus, stomach, and upper and lower intestines, depending on
the depth of the device in the body. In the open literature, there are
many publications that address modelling of the human body’s channel
for wireless body area network (WBAN). A few of the publication
addressed communication with the instrument inside the body, but
very few research studies focused specifically on WCE. The radiation
from the ingested capsule in the human intestine was tested in the
frequency range of 150MHz to 1200MHz, and it was observed that
the maximum radiation was between 450 MHz and 900 MHz and
that more radiation occurred in the anterior region than in the
posterior region [22]. The propagation of the electromagnetic field
from the intestine was investigated for the range of frequencies from
100MHz to 700 MHz using the homogenous model of the body and
the heterogeneous model, and two unusual behaviours were observed,
i.e., relatively lower attenuation above 400 MHz and dip radiation at
frequencies less than 400 MHz [23]. The depth of capsule device is
a very important factor that affects path loss and that, for WCE,
varies from patient to patient. A parallel finite-difference time-domain
(FDTD) method [24, 25] was used in [26] for a simulation-based study
of the variation of path loss between patients, and the results indicated
that path loss can vary up to a maximum of approximately 19%
between patients, which affects the maximum 50% bit error rate in
the system. A different approach was used to estimate the path loss
in the body’s channel for WCE with a set of X-ray CT images and
measurements conducted at two different frequencies, i.e., 403MHz and
2,450MHz. The measurement results indicated that the radiation at
2,450MHz was highly dependent on the medium and was attenuated to
a greater extent [27]. In order to determine the path loss of the human
body’s communication channel in the abdominal region for a medically-
implantable device, a numerical, electromagnetic (EM), simulation-
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based statistical model was developed for 1–6GHz and depths in the
range of 10 to 150 mm [28].

However, in our research, the path loss of the human body’s
channel in electromagnetic wave propagation from the ingested capsule
to the body’s lead antenna in WCE was evaluated using the finite-
integration technique and the heterogeneous body model. In order to
indicate the optimum frequency of the system perfectly for the WCE,
a wide range of frequencies was used in the simulation. The variation
of path loss in different regions and depths in the GI path, considering
actual human anatomy in the digital body model has been investigated
extensively, but the results have not yet been published in the open
literature.

2. METHOD AND ANALYSIS

The loss in electromagnetic wave propagation through free space can
be determined easily from Equation (1), which indicates that the loss
is a simple function of frequency and distance [29].

Path loss = Pt − Pr = 20 log
4πfd

c
(1)

where Pt is the transmitted power, Pr the received power, d
the distance between the transmitting and receiving points, f the
frequency, and c the speed of light. Although it is possible to calculate
the loss in wave propagation through a general lossy medium, it is quite
difficult to do for the human body due to the complex and differing
structures of the dielectric layer. In order to distinguish the different
dielectric layers of the body from each other, an X-ray CT image was
used in [27] to estimate the path loss by the body’s channel. Using
this method, the multi-layer human body can be converted to a single-
layered, lossy medium with an average relative permittivity ε̄r and
conductivity σ̄ in Equations (2) and (3), respectively:

ε̄r(f, p) =
1
N

m∑

i=0

εri ·Ni(f, p) (2)

σ̄(f, p) =
1
N

m∑

1=0

σi ·Ni(f, p) (3)

where εri and σi are the relative permittivity and conductivity of the
ith layer’s tissue, respectively. Ni is the number of pixels in the X-ray
CT image of that layer, p the set of directions from inside the body
to outside the body, and N the total number of pixels on the line of
site from the source to the receiving antenna. Hence, the attenuation
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constant [27, 30] of body tissue can be obtained from the values of ε̄r

and σ̄ using Equation (4).

αbody = Re
[
jω
√

µε̄r

(
1 +

σ̄

jωε̄r

)]
(4)

Finally, the path loss by the body tissue Lbody was given by [31] as:

Lbody = 20 log10 exp (−αbodydbody) (5)

where dbody is the distance between the source and the receiving
antenna. However, this model only can provide a rough estimate
of the path loss, which limits it applicability because more accurate
estimates of path loss are required for simulations using the digital
body model [30–37].

2.1. Human Body Model

The human body consist of multiple layers of tissue materials that have
different dielectric properties. For modelling the human body’s channel
by simulating the electromagnetic fields, both the homogeneous and
heterogeneous body models are used. Among these, the homogeneous
body model is used more often in simulating EM fields because of its
simplicity in that it contains only skin material and lossy material,
such as salt water [38]. This body model was considered to be a
good choice for observing radiation patterns, but the accuracy of
its measurements of path loss measurement is suboptimal. In the
heterogeneous body model, the complex, actual human anatomical
structure exists as a voxel data set, which is more comparable to
the human body for measuring path loss [39]. Also the different
anatomical regions, such as the esophagus, stomach, and intestine, are
distinguishable only in the heterogeneous model. This model consists
of millions of small ‘bricks’ each of which has a different electrical
property from the others, as is the case with actual body tissue. In
order to achieve better accuracy, the heterogeneous digital body model
(HUGO human body) was used in this work. The HUGO model of the
human body that we used was a hypothetical male who was 187.4 cm
tall, 37.4 cm wide and 34.1 cm deep (Figure 1). This model contained
32 different tissues with the highest resolution being 1 × 1 × 1 mm3,
allowing the simulation to produce more accurate results [40, 41]. The
anatomical data, provided by the Visible Human Project of the U.S.
National Institutes of Health, were implemented in HUGO model. The
dielectric properties of the 32 distinct tissues were provided at seven
different frequencies, ranging from 100MHz to 2,450 MHz. The user
interface of an integrated package in Microwave Studio gives the option
of arbitrarily choosing whether to include or exclude any type of tissue
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Figure 1. Heterogeneous model of the human body.

in the simulation. The frequency-dependent dielectric properties for
the tissues used in this model are available in the data sheet of the
Federal Communication Commission [45]. The conductivity of body
tissue increases with frequency and consequence to high absorption
loss [42, 43]. Likewise some of the tissues (fat, skin, muscle, blood,
intestine) show high dissimilar dielectric property with each other that
result high impedance mismatch and high reflection loss [44, 46, 47] at
the interface of these layer.

2.2. Simulation Setup

In this simulation, the actual anatomical structure of the human body
in a voxel data set was used [39], which allowed us to distinguish tissues
and depths that were visually different from the surface of the body
screen. The analogy of a typical WCE is shown in Figure 2(a). As
can be seen in this figure, many different, practical locations of the
capsule in the GI tract were considered to evaluate the path loss and
its variation due to the different anatomical structures at different
locations (Figure 2(b)). Table 1 shows the locations of the capsule
that were assessed in the simulation. Rather than using the whole
body, we used 10 cm × 10 cm × D cm (varying)-shaped, sliced tissues
from the selected locations and passed the EM signal through these
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(a) (b)

Figure 2. (a) Analogy of typical WCE; (b) human anatomy used in
the body model showing the capsule locations that were considered in
investigating path loss.

Table 1. Description of the capsule locations used in the investigation
of path loss.

Capsule

location
Region

Depth from anterior

skin (D cm)

A Upper Esophagus 7

B Lower Esophagus 13

C1, C2, C3 Stomach 4, 10, 17

D1, D2, D3 Upper Intestine 5, 10, 15

E1, E2 Intestine (above abdominal region) 6, 14

F1, F2 Intestine (abdominal region) 5, 10

tissues.
Two waveguide ports, i.e., port 1 (positive) and port 2 (negative),

were used as a source and a receiving port, respectively. Port 1 set
inside of the body and port 2 set outside of the body. The port 2,
touching this port to the skin of the body will produce more accurate
results. But both of the ports were set at a tissue-surface separation of
5mm to adjust to the mesh-cell setting. Automatic, hexahedral, mesh
generation was used because it was suggested in CST users’ manual
as the effective way to generate the mesh. The resultant path loss
will be derived in between port 1 and port 2. This will include the
effect of the interface between the skin and external medium-human
body (air). The path loss for the 5 mm air gap (from outer skin to
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(a) (b)

Figure 3. (a) Boundary condition; (b) simulation setup for
investigating path loss in the body channel.
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Figure 4. Variation of accuracy with the resolution of body model in
simulation.

port 2) is too small and has been neglected. Figure 3 shows the
simulation setup and boundary conditions used to investigate path
loss. This simulation setup was based on that of a pyramidal microwave
absorber [48–50]. The HUGO model can be used for seven different
resolutions from 1 × 1 × 1 mm3 to 8 × 8 × 8mm3 brick (pixel) size.
Resolution used in simulation had a salient effect on the results, and
this effect is shown in Figure 4. The figure shows that the results can
vary by a maximum of 5 dB due to the selection of the maximum or
the minimum resolution. In order to get more accurate results, the
maximum resolution of 1 × 1 × 1mm3 was used. In addition, the 32
distinct tissue materials that were available also were included to make
the simulation more realistic.
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3. RESULTS AND DISCUSSION

The results of path loss and its disparity (with capsule location) in
the heterogeneous body channel were presented as a vertical bar graph
and as a line graph. The vertical bar graph shows the path loss at
different frequencies when the dielectric properties of the tissue was
known (supplied by the vendor). In order to show how the path loss
varied as a function of frequency, the path loss also was simulated
and is represented by the line graph in the range of frequencies from
100MHz to 2,450 MHz. The properties of the tissues over the range of
frequencies that was used was based on the properties that are shown
in Table 2.

Table 2. Frequency range that was considered in the simulation of
the properties of specific tissue.

Tissue property @ Simulation range
100MHz 100–350MHz
450MHz 350–750MHz
900MHz 750–1600MHz
1800MHz 1600–1850MHz
1900MHz 1850–2000MHz
2100MHz 2000–2300MHz
2450MHz 2300–2450MHz
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Figure 5. Path loss for the capsule position at A (upper esophagus):
(a) with exact tissue property; (b) with the tissue property considered
in Table 2.
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As shown in Figures 5–10, the path loss was comparatively higher
for frequencies greater than 900MHz, irrespective of the location of
the capsule. Due to this common characteristic of the body channel,
it was recommended that frequencies less than 900MHz be used for
WCE [22, 51]. But the diverse, anatomical complexity affected the
EM wave propagation differently in different regions of the anatomical
structure. Consequently, the peak and nadir of path loss also varied
depending on the location and depth of the capsule.

Figure 5 shows the path loss for the capsule location at A, the
upper esophagus, where the line of sight distance between the capsule
and the body lead antenna is 7 cm for body model that was used. At
this location, the loss decreased from −32 dB at 100 MHz to −27 dB at
300MHz and 700MHz. The loss increased as the frequency increased
above 700 MHz, and its peak was −60 dB between 1800 MHz and
1900MHz (Figure 5(b)). Although the path loss decreased after
1900MHz, it still remained at −45 dB at 2,450 MHz (Figure 5(a)),
which is almost double the loss at 700MHz. In the lower esophageal
region, at capsule location B, overall path loss increased significantly
compared to location A, due to the additional dielectric layers of the
lungs, heart, and blood along the propagation direction that increased
the reflection loss of the EM wave during propagation. When the
capsule was in this position, path loss remained lower, i.e., less than
−40 dB for frequencies less than 600 MHz. The peak loss increased to
its maximum of −84 dB at 1,760 MHz, and the peak and nadir also
shifted by about 100MHz to lower frequencies (Figures 6(a) and 6(b)).

The variation of path loss over the frequency range was highly
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Figure 6. Path loss for the source position at B (lower esophagus):
(a) with exact tissue property; (b) with the tissue property considered
in Table 2.



Progress In Electromagnetics Research, Vol. 133, 2013 505

related to the depth of the capsule in the body, and the variation
increased as depth increased. Figure 7(a) shows that the differences
between minimum and maximum losses were 20 dB, 31 dB, and 34 dB
at C1 (at minimum depth, 4 cm), C2 (at centre depth, 10 cm), and C3
(at maximum depth, 17 cm), respectively. Figure 7(b) shows that there
was a rapid decrease in path loss in the frequency range of 450 MHz
to 900 MHz for the maximum and centre depths of the capsule in the
stomach.

The intestine is the largest part of the human GI tract, and it
consists of the most complex structure, with repetitive, curvy-shaped,
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Figure 7. Path loss for the source position at C (stomach): (a)
with exact tissue property; (b) with the tissue property considered
in Table 2.
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Figure 8. Path loss for the source position at D (upper intestine): (a)
with exact tissue property; (b) with the tissue property considered in
Table 2.



506 Basar et al.

dissimilar tissue layers, while the anatomy of the stomach is not as
hostile as that of the intestine for the propagation of EM waves.
Because of these anatomical variations, the path loss is slightly greater
in the intestine than in the stomach at equal depths of the capsule.
Also, the number of dissimilar tissue layers differs in the upper and
lower regions, which results in different propagation characteristics
from the different locations in the intestine. At the upper portion
of the intestine (location D), there is the greatest number of layers,
whereas the lower portion around the abdomen increases the reflection
loss and the absorption loss. Consequently, the overall loss in the upper
portion of the intestine increases. Figures 8 and 10 show that the loss
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Figure 9. Path loss for the source position at E (upper abdominal
region): (a) with exact tissue property; (b) with the tissue property
considered in Table 2.
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Figure 10. Path loss for the source position at F (abdominal region):
(a) with exact tissue property; (b) with the tissue property considered
in Table 2.
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at the same frequency of 450 MHz and the same depth of 10 cm was
−24 dB at D2 and −14 dB at F2. Figures 9 and 10 also show that the
loss is greater in the upper abdominal region (E) than in the abdominal
region (F).

At a frequency of 450MHz, the maximum loss at E is −23 dB,
while the maximum loss is −14 dB at F. In Figure 8(b), the path
loss decreases at 500MHz in the upper intestine and then continues
to increase. But in Figures 9(b) and 10(b), the path loss increases
continuously without a decrease in the upper abdominal and abdominal
region. This indicates that the further the frequency is from 450 MHz,
the greater the path loss becomes.

Finally, Table 3 shows the minimum and the maximum path
loss when the capsule was in various anatomical locations. Clearly,
there was a significant difference between these two losses. Also, the
graphs show that this difference is even greater when the frequency is
more than 900 MHz. Therefore, frequencies greater than 900 MHz are
prohibited for WCE. But Table 3 shows that the minimum path loss

Table 3. Minimum and maximum path loss throughout the capsule’s
path.

Location Minimum Path loss (dB) Maximum Path loss (dB)

A −29 @ 450 MHz −50 @ 1900MHz

B −38 @ 450 MHz −71 @ 1800MHz

C −7 @ 100MHz −57 @ 1800MHz

D −16 @ 450 MHz −70 @ 2450MHz

E −9 @ 100MHz −50 @ 2100MHz

F −6 @ 100MHz −61 @ 2100MHz

Table 4. Minimum and maximum path loss at frequencies of 450 MHz
and 900 MHz.

Location

450MHz 900MHz

Minimum Path

loss (dB)

Maximum path

loss (dB)

Minimum Path

loss (dB)

Maximum path

loss (dB)

A −29 −32

B −38 −48

C −10 −34 −10 −46

D −16 −33 −20 −37

E −10 −23 −11 −31

F −9 −14 −11 −20
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always occurred at 450 MHz or lower. Also, Table 4 shows that the
maximum path loss is 10 dB greater at 900 MHz than at 450 MHz. All
of these results lead us to recommend the frequency of 450 MHz as the
best choice for an optimized design of a telemetry system to be used
in WCE.

4. CONCLUSIONS

The path loss in electromagnetic signal propagation through the human
body’s channel in wireless capsule endoscopy was investigated in this
work. To relate to an actual human body more accurately, an
heterogeneous digital body model was used, which was more suitable
than a homogenous model, especially for the investigation of path loss.
In our investigation, six vertical and a total of 12 different practical
capsule positions were considered in the GI tract. The results showed
that, for most of the cases, the path loss increased with frequency
continuously. A slight decrease was observed at 500 MHz in the upper
intestine and at 300 and 700 MHz in the upper esophagus region.
The results led us to recommend the use of a frequency of 450MHz
for an efficient and effective capsule telemetry system. Although,
the frequency range of 450 to 900 MHz has been suggested for WCE
telemetry systems in some papers, it is clear from our results that the
difference of the maximum path loss between 450 MHz and 900 MHz is
10 dB. Throughout the capsule’s path, at the recommended frequency,
the path loss varied between −9 dB and −38 dB. This variation is vital
information because it is required in considering the link budget in
the design of a high-efficiency telemetry system for next generation
capsules with constant bit error rates as well as image transmission
rate.

However, the upper and lower limits of the path-loss variations
in this work are applicable only for the body model we used. It is
unexpected to be significant dissimilarities with the subject similar
fitness of used body model, but the upper and lower limits of path loss
can vary with the patient’s size, weight, gender, and age. To overcome
this problem and to further optimize the WCE telemetry system,
patient-specific telemetry systems must be designed and tested.
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