EFFECT OF FILLER'S TYPE, CONTENT AND **MIXING METHOD ON PROPERTIES OF LOW DENSITY POLYETHYLENE/NATURAL RUBBER**

(LDPE/NR) COMPOSITES

by orienal copyright SE prote **ABDULBASET MOHAMED ERFEIDA**

SCHOOL OF MATERIALS ENGINEERING **UNIVERSITY MALAYSIA PERLIS**

2011

EFFECT OF FILLER'S TYPE, CONTENT AND MIXING METHOD ON PROPERTIES OF LOW DENSITY POLYETHYLENE/NATURAL RUBBER (LDPE/NR) COMPOSITES

ABDULBASET MOHAMED ERFIEDA

By

1031620004

Thister

A thesis submitted

In fulfillment of the requirements for the degree of

Master of Science (Materials Engineering)

SCHOOL OF MATERIALS ENGINEERING UNIVERSITY MALAYSIA PERLIS

2011

ACKNOWLEDGEMENT

بسم الله الرحمن الرحيم

In the name of Allah, the Beneficent, the Merciful

With blessings and peace be upon the most honorable Prophets and Messengers, Muhammad and his Folk, Companions and those who follow noble way.

In the name of Allah SWT, the Beneficent and Merciful. Praises be to Allah SWT for leading me to His path, who has given me the perseverance and commitment in the completion of this study with His Will. A debt of gratitude to my supervisor, Dr. Du Ngoc Uy Lan, who relentlessly guided me and supported my efforts to learn as much as possible. It had been a pleasure to work under a knowledgeable person who has an absolutely logical approach towards problem solving and defining reason to evidence.

To the lecturers who had educated the students. Thank you for your guidance. I would also like to express my gratitude towards my lecturers, each person who has taught me and Dr. Ir. Salmah Husseinsyah, staff and technicians of the School of Materials Engineering for their effort and time in assisting during the ongoing of my project. Thanks also to my dear friends, who had each given me a helping hand during the development of this study.

Finally, my appreciations towards my loving family who are always there to support and remind me to always hold my head up in times of difficulty. Thank you all.

A special thanks to my brother (Martyr): **Abdulla Mohamed Erfieda**, he has had the great merit of completing a master science's study, he was always support and encourage me to be the best throughout his life.

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF TH	ESIS	
Author's full name : ABDULBASET ERFIEDA		
Date of birth : 30th/01/1986		
Title : EFFECT OF FILLER'S TYPE, CO	ONTENT AND MIXING METHOD ON	
PROPERTIES OF LOW DENS	ITY POLYETHYLENE/NATURAL	
RUBBER (LDPE/NR) COMPOSI	ITES	
Academic Session : 2011-2012		
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:		
CONFIDENTIAL (Contains confidential information u	nder the Official Secret Act 1972)*	
RESTRICTED (Contains restricted information as	specified by the organization where research	
OPEN ACCESS I agree that my thesis is to I		
copy or on-line open access (full te	be made immediately available as hard ext)	
I, the author, give permission to the UniMAP to reproduce this research or academic exchange only (except during a period of		
	Certified by:	
SIGNATURE	SIGNATURE OF SUPERVISOR	
323298	DR. DU NGOC UY LAN	
(PASSPORT NO.)	NAME OF SUPERVISOR	
Date:	Date:	

KESAN TERHADAP JENIS DAN KANDUNGAN PENGISI SERTA KAEDAH PENCAMPURAN SIFAT-SIFAT KOMPOSIT POLIETILENA BERKETUMPATAN RENDAH/GETAH ASLI

Abstrak

Kajian ini berasaskan penyediaan komposit polietilena berketumpatan rendah (LDPE) dan getah asli (NR) yang mengandungi tiga jenis bahan pengisi (silika, kanji jagung dan hampas kelapa) yang mengandungi pelbagai nisbah dan menggunakan kaedah pencampuran yang berbeza. Kaedah pencampuran bahan pengisi ini melibatkan LDPE/NR (campuran I), LDPE (campuran II) dan NR (campuran III). Kesemua sebatian ini disediakan menggunakan kaedah pencampuran tertutup Brabender pada suhu 150 °C selama 10 minit, Campuran 1 melibatkan LDPE yang dicampur bersama NR dan kemudiannya bahan pengisi yang lain. Campuran II, LDPE dicampur bersama bahan pengisi dan kemudiannya bersama NR. Manakala campuran III, bahan pengisi dicampur bersama NR menggunakan mesin dua penggelek, setelah itu menggunakan pencampuran tertutup untuk dicampurkan bersama LDPE. Keputusan menunjukkan bahawa, kekuatan tegangan yang diperolehi dari campuran I dan II menunjukkan peningkatan apabila bahan pengisi silika semakin bertambah. Namun kekuatan tegangan menurun apabila pertambahan bahan pengisi silika ditambahkan dalam pencampuran ke III. Manakala pada sebatian silika di campuran II mencapai kekuatan tegangan yang tinggi. Kekuatan tegangan untuk sebatian LDPE/NR bersama bahan pengisi organik (kanji jagung-hampas kelapa) untuk semua kaedah pencampuran menunjukkan penurunan apabila nisbah pengisi bertambah namun demikian, kekuatan tegangan pada ketika kanji jagung ditambah ke dalam kaedah pencampuran II berlaku penurunan dan meningkat setelah nisbah kanji jagung ditingkatkan. Nilai kekuatan tegangan tertinggi untuk sebatian pengisi organik diperoleh dari kaedah pencampuran I. Manakala nilai pemanjangan pada takat putus bagi komposit LDPE/NR dan pengisi diperolehi dari komposit LDPE/NR dan pengisi jenis kanji jagung.

Namun, nilai kekuatan tegangan berfungsi diperolehi daripada komposit LDPE/NR yang mengandungi bahan pengisi jenis silika.

Analisa terhadap keretakan tegangan pada komposit setelah pengekstrakan soxhlet dan keretakan tegangan menunjukkan morfologi bagi NR dan LDPE serta bahan pengisi bergantung kepada jenis bahan pengisi dan kaedah pencampuran yang digunakan. Campuran silika di dalam komposit LDPE/NR menunjukkan fasa NR yang lebih luas berbanding LDPE. Manakala penambahan bahan pengisi kanji jagung ke dalam komposit LDPE/NR menunjukkan kesan penyerakan yang baik tetapi apabila ditambahkan bahan pengisi jenis hampas kelapa ke dalam komposit LDPE/NR menunjukkan kurang berlakunya penyerakkan dan morfologi yang kurang .rpe. baik berbanding apabila ditambahkan bahan pengisi kanji jagung.

EFFECT OF FILLER'S TYPE, CONTENT AND MIXING METHOD ON PROPERTIES OF LOW DENSITY POLYETHYLENE/NATURAL RUBBER (LDPE/NR) COMPOSITES

ABSTRACT

This study was based on preparation of low density polyethylene (DDPE) and natural rubber (NR) composites with three types of fillers (Silica, Corn Starch and Coconut Husk) and different contents (10, 20 and 30 phr) using three different mixing methods. These methods focused on the mixing order of filler into LDPE/NR (mixing I), in LDPE (mixing II) or in NR (mixing III). All the compounding is carried out by Brabender internal mixer at 150 °C for 10 minutes. In mixing I, LDPE was mixed with NR followed by addition of filler. Mixing II, LDPE was mixed with filler followed by addition of NR. Mixing III, the filler was mix with NR by two-roll mills and followed with LDPE in internal mixer. Result indicated that the tensile strength in mixing I and II methods was increased with the increasing of inorganic filler (Silica) content, but decreased with increasing content of silica in mixing III method. Silica composite in mixing II achieved the highest tensile strength. At all mixing methods the tensile strength for LDPE/NR composites with the organic fillers (Corn Starch and Coconut Husk) decreased when the filler content increased but the tensile strength with addition of corn starch in mixing II method was decreased and increased when the content of corn starch increased. The highest tensile strength for organic filler composite was obtained from the mixing I method. The highest elongation at break for LDPE/NR composite with the fillers was at LDPE/NR composite with corn starch filler but the highest tensile modulus was at LDPE/NR composite with silica filler.

The tensile fracture surface of the composites and soxhlet extraction showed the morphology of NR and LDPE as well as fillers are strongly dependent on filler types and also mixing methods, where addition of silica to LDPE/NR composite was tended to prefer NR phase more than LDPE phase. Addition of corn starch filler to LDPE/NR composite designated better dispersion but with addition of coconut husk to LDPE/NR composite showed poor

vi

TABLE OF CONTENTS

ACKNOWLEDGMENT	Page i
DECLARATION	ii
ABSTRAK	iii
ABSTRACT	v
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
ACKNOWLEDGMENT DECLARATION ABSTRAK ABSTRACT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF FIGURES	xii
LIST OF SYMBOLS AND ABBREVIATION	xvi
Ked -	
CHAPTER 1: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	3
1.3 Objectives of Research	4
1.4 Scope	5
CHAPTER 2: LITERATURE REVIEW	6
2.1 Polymer Blend	6
2.2 Polymer Composites	8
2.3 Low Density Polyethylene (LDPE)	10
2.4 Natural Rubber (NR)	16

2.5 Inorganic Filler (Silica)	17
2.6 Organic Filler	19
2.6.1 Corn Starch	20
2.6.2 Coconut Husk	20
2.7 Morphology of Thermoplastic Elastomer Phase in	21
Blend	
2.7.1 Mooney Viscometer	21
2.7.2 Morphology	22
CHAPTER 3: METHODOLOGY	27
3.1 Materials	27
3.1.1 Low Density Polyethylene	27
3.1.2 Natural Rubber	28
3.1.3 Filler	28
3.1.3.1 Silica	28
3.1.3.1 Silica 3.1.3.2 Corn Starch	28
3.1.3.3 Coconut Husk	29
3.2 Equipment	29
3.3 Procedures	29
3.3.1 Sample Preparation	29
3.3.2 Flow Chart	30
3.3.3 Mixing Methods for Compounds	32

		3.3.3.1 Mixing I	32
		3.3.3.2 Mixing II	33
		3.3.3 Mixing III	35
3.4 H	lot Pr	ess	37
3.5 S	Soxhle	t Extraction	37
3	5.5.1	Processing Condition	37
3	5.5.2	Weight Percentage of Materials Extracted	39
		After Soxhlet Extraction	
3.6 1	resting	g and Characterization	39
3	6.6.1	Filler Characterization	39
		3.6.1.1 Pycnometer Density	39
	.ð	3.6.1.2 Brunarer, Emmett and Teller (BET)	40
<u>،</u> 3	.6.2	Mooney Viscosity	41
	6.6.3	Tensile Properties	42
3	6.6.4	Scanning Electron Microscope (SEM)	42
CHAPTER 4: 1	RESU	LTS AND DISCUSSION	44
		of Silica, Corn Starch and Coconut Husk Filler	44
4.2 E	Brunai	rer, Emmett and Teller (BET)	46
4.3 N	Aoone	y Viscosity	49
4.4 1	Forque	e	52
4.5 1	ſensile	e Properties	58
4	.5.1	Tensile Strength	59

4.5.2 Elongation at Break	66
4.5.3 Tensile Fracture Surface	70
4.5.3.1 Tensile Fracture Surface of LDPE/NR	70
Without Filler	
4.5.3.2 TensileFracture Surface of LDPE/NR-	71
Si Composite	
4.5.3.3 Tensile Fracture Surface of LDPE/NR-	73
C _S Composite	
4.5.3.4 Tensile Fracture Surface of LDPE/NR-	75
C _H Composite	
4.5.4 Tensile Modulus	77
4.6 Soxhlet Extraction	81
4.7 Morphology	82
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	95
5.1 Conclusion	95
5.2 Recommendations	97
REFERENCES	93

LIST OF TABLES

Table No:		Page
2.1	Some commercial synthetic polymers that are already in use. \mathbf{x}	12
2.2	Some natural product polymers.	19
3.1	The Properties of low density polyethylene.	27
3.2	The Properties of natural rubber.	28
3.3	The compound formulation and nomination in mixing I.	32
3.4	The compound formulation and nomination in mixing II.	34
3.5	Filler content in filler-filled NR.	35
4.1	The average density and pore volume results for the fillers.	44
4.2	The surface area properties of fillers.	47
4.3	The fillers effect on Mooney viscosity results for natural rubber.	49
4.4	The torque results of mixing composite into Brabender mixer.	53
4.5	The results of the tensile properties.	58
4.6	The extracted percentage of LDPE/NR blends and composites	80
	with different fillers after Soxhlet extraction.	

LIST OF FIGURES

	Figure No:		Page
	2.1	Chemical structure for low density polyethylene.	13
	2.2	Schematic representations of the different classes of	14
		polyethylene.	
	2.3	Chemical structure for rubber.	16
	2.4	Surface morphology of: (a) barley husk and (b) coconut shell.	23
	2.5	SEM micrographs of toluene-extracted samples.	24
	2.6	Elastomer particles appear pale grey and the matrix PP is dark.	25
	3.1	Sieve Machine.	30
	3.2	The flow chart of experiment.	31
	3.3	Brabender Machine.	31
	3.4	The flow chart of experiment in mixing I method.	33
	3.5 .	The flow chart of experiment in mixing II method.	34
	3.6	Two Roll Mills Machine.	35
Ć	3.7	The flow chart of experiment in mixing III method.	36
C	3.8	The Hydraulic Hot Press Machine.	37
	3.9	The Equipments of Soxhlet Extraction.	38
	3.10	The Pycnometer Density Machine.	40
	3.11	Brunarer Emmett and Teller (BET) Machine.	40
	3.12	The Mooney Viscometer Machine.	41

Figure No: Page 3.13 The Universal Testing Machine (UTM). 42 3.14 Scanning Electron Microscopy. 43 4.1 The density vs cycle number for Si, C_H and C_S . 45 4.2 48 BET analysis of quantity adsorbed versus relative pressure. 4.3 Mooney viscosity results for 10 and 20 phr fillers-filled NR. 50 4.4 The average Mooney viscosity results for 20 phr fillers-filled NR. 51 4.5 Torque and temperature for LDPE/NR composite with 30 phr 54 fillers in mixing I. 4.6 Torque and temperature for LDPE/NR composite with 20 phr 55 fillers in mixing II. 4.7 Torque and temperature for LDPE/NR composite with 20 phr 56 fillers in mixing III. The change of torque value during different mixings. 4.8 57 4.9 The tensile strength results for LDPE/NR composites with 10, 59 20 and 30 phr fillers in mixing I. The tensile strength results for LDPE/NR composites with 10, 61 20 and 30 phr fillers in mixing II. 4.11 62 The tensile strength results for LDPE/NR composites with 10, 20 and 30 phr fillers in mixing III. 4.12 The tensile strength results for LDPE/NR-C_S composite in 63 different mixing processes.

	4.13	The tensile strength results for LDPE/NR-C _H composite in	64
		different mixing processes.	
	4.14	The tensile strength results for LDPE/NR-Si composite in	65
		different mixing processes.	
	4.15	The tensile strength results for LDPE/NR composite with 20	66
		phr of different fillers in different mixings.	
	4.16	The tensile elongation at break results for LDPE/NR composite	67
		with different fillers in mixing I,	
	4.17	The tensile elongation at break results for LDPE/NR composite	68
		with different fillers in mixing II.	
	4.18	The tensile elongation at break results for LDPE/NR composite	69
		with different fillers in mixing III.	
	4.19	The tensile elongation at break results for LDPE/NR composite	69
	, e	with different fillers in different mixings.	
	4.20	SEM pictures of tensile fracture surface for LDPE/NR	70
	Clur.	composite without filled.	
\bigcirc	4.21	SEM pictures of tensile fracture surface for LDPE/NR-Si	72
		composite.	
	4.22	SEM pictures of tensile fracture surface for LDPE/NR-C _S	74
		composite.	
	4.23	SEM pictures of tensile fracture surface for LDPE/NR-C _H	76
		composite.	

4.24	The tensile modulus of elasticity results for LDPE/NR	78
	composite with different fillers in mixing I.	
4.25	The tensile modulus of elasticity results for LDPE/NR	79
	composite with different fillers in mixing II.	
4.26	The tensile modulus of elasticity results for LDPE/NR	79
	composite with different fillers in mixing III	
4.27	The tensile modulus of elasticity results for LDPE/NR	80
	composite with 20 phr of different fillers in different mixings.	
4.28	SEM pictures after Soxhlet extraction for LDPE/NR composite	83
	without filler.	
4.29	SEM pictures after Soxhlet extraction for M3Si20.	85
4.30	SEM pictures after Soxhlet extraction for M3C _s 20.	87
4.31	SEM pictures after Soxhlet extraction for $M3C_H20$.	89
4.32	SEM pictures after Soxhlet extraction of front surface for	91
	LDPE/NR-C _H composite after hot-press.	
4.33	SEM pictures of cross surface after Soxhlet extraction for	94
	LDPE/NR-C _H composite after hot-press	

LIST OF SYMBOLS AND ABBREVIATION

	PE	Polyethylene
	NR	Natural Rubber
	LDPE	Low Density Polyethylene High Density Polyethylene
	HDPE	High Density Polyethylene
	LNR	High Density Polyethylene Liquid Natural Rubber Polypropylene Part per hundred resin
	PP	Polypropylene
	phr	Part per hundred resin
	°C	Degree Centigrade
	mm	Millimeter
	С	Carbon
	Н	Hydrogen Atom
	CH ₃	Methyl
	UV ·×	Ultraviolet
	TPNR	Thermoplastic Natural Rubber
Ć	MRPRA	Malaysian Rubber Producers' Research Association
0	Si	Silica
	C _H	Coconut Husk
	Cs	Corn Starch
	%	Percentage
	%wt	Weight Percentage

MPa	Mega Pascal
-----	-------------

Gram g

- cm^3 Cubic Centimeter
- Micrometer μm
- Minute min
- Kilo Newton KN
- Brunarer, Emmett and Teller BET
- Scanning Electron Microscope SEM
- 121 copyright American Society for Testing Material ASTM
- m^2 Square meter
- Average Viscosity MV
- Minimum Viscosity VM
- M1Mixing I method
- Mixing II method M2

M0

- M3 Mixing III method
 - LDPE/NR composite without filler

M1Si10	LDPE/NR composite with 10 phr Silica prepared by Mixing I method
Om1Si20	LDPE/NR composite with 20 phr Silica prepared by Mixing I method
M1Si30	LDPE/NR composite with 30 phr Silica prepared by Mixing I method
M2Si10	LDPE/NR composite with 10 phr Silica prepared by Mixing II method
M2Si20	LDPE/NR composite with 20 phr Silica prepared by Mixing II method
M2Si30	LDPE/NR composite with 30 phr Silica prepared by Mixing II method

- M3Si10 LDPE/NR composite with 10 phr Silica prepared by Mixing III method
- M3Si20 LDPE/NR composite with 20 phr Silica prepared by Mixing III method
- M1C_s10 LDPE/NR composite with 10 phr Corn Starch prepared by Mixing I method
- M1C_s20 LDPE/NR composite with 20 phr Corn Starch prepared by Mixing I method
- M1C_s30 LDPE/NR composite with 30 phr Corn Starch prepared by Mixing I method
- M2C_s10 LDPE/NR composite with 10 phr Corn Starch prepared by Mixing II method
- M2C_s20 LDPE/NR composite with 20 phr Corn Starch prepared by Mixing II method
- M2C_s30 DPE/NR composite with 30 phr Corn Starch prepared by Mixing II method
- M3C_s10 LDPE/NR composite with 10 phr Corn Starch prepared by Mixing III method
- M3C_s20 LDPE/NR composite with 20 phr Corn Starch prepared by Mixing III method
- M1C_H10 LDPE/NR composite with 10 phr Coconut Husk prepared by Mixing I method

- M1C_H20 LDPE/NR composite with 20 phr Coconut Husk prepared by Mixing I method
- M1C_H30 LDPE/NR composite with 30 phr Coconut Husk prepared by Mixing I method
- M2C_H10 LDPE/NR composite with 10 phr Coconut Husk prepared by Mixing II method
- M2C_H20 LDPE/NR composite with 20 phr Coconut Husk prepared by Mixing II method
- M2C_H30 LDPE/NR composite with 30 phr Coconut Husk prepared by Mixing II method
- M3C_H10 LDPE/NR composite with 10 phr Coconut Husk prepared by Mixing III method
- M3C_H20 LDPE/NR composite with 20 phr Coconut Husk prepared by Mixing III method

OThisten

CHAPTER 1

INTRODUCTION

1.1 Research Background

The blending of two or more polymers has become an increasingly important technique for improving the cost performance ratio of commercial plastics. For example, blending may be used to reduce the cost of an expensive engineering thermoplastic, to improve the treatments of a high-temperature or heat-sensitive thermoplastic, or to improve the impact resistance. Research on the elastomerthermoplastic blend has high interested on natural rubber-polyethylene (NR/PE) blends (Choudhury, et al., 1990). The main characteristic of these blends is a two-phase system (Elliot and Tinker, 1990). The first phase is a hard polymer domain which does not melt at room temperature but starts melting at elevated temperatures (LDPE). The second phase is soft rubbery (NR). Structure-wise, polyethylene is expected to be more readily compatible with natural rubber when they are blended (Brydson, 1995). NR/PE blends are normally carried out using a mixer such as a Brabender Plasticorder mixer operating at a rotor speed of between 40 and 60 rpm and a mixing temperature higher than the PE's melting point (Choudhury, et al., 1990). Compatibiliser can also improve the compatibility of phases in natural rubber/polyolefin blends (Abdullah and Ahmad, 1992; Ibrahim and Dahlan, 1998; Dahlan, et al., 2002). It reduces the interfacial tension within the blends, and improves the interfacial adhesion of the blend phases resulting in improved properties (Subramaniam and Mehra, 1987).

Since natural rubber and low density polyethylene are not of the same group of polymer, the expected properties will not be achieved because of poor adhesion between the phases created due to immiscibility in the thermodynamics sense. This situation can be remedied by using certain fillers to improve the interfacial interactions between the phases. One of the elastomer-thermoplastic problems is morphology, and there were some studies to treat that by using Electron-Beam (Dahlan, et al., 2002).

Fillers may be used at concentrations of 10% to 50%, targeted at some desired physical or chemical properties, but also frequently useful as cheapeners. Wherever their major utility is to stiffen and strengthen, they will be termed "reinforcement," and in most cases have a fibrous structure. Particle size and distribution are of highest importance. The inorganic fillers include limestone, quartz, silica, talcum, alumina and other minerals, which are often characterized by its effectiveness and expensive or organic, which is characterized by light weight and affordability, include sawdust, paper, jute or. Currently, low cost fillers are also added to polyolefin and to most polymers, without reducing the profile or impairing melt flow. In order to enhance the adhesion of fillers and polymer matrix an interesting industry of coupling agents has been developed, including stearates, silanes and, recently, titanates. These materials show chemical affinity to both polymer and inorganic filler. In general, fillers improve dimensional stability and impact strength, mainly for brittle thermosets. In addition, there are currently fillers that convert a polymer into an electrical conductor or semiconductor and there are a large collection of synthetic fibers based on polymers (Arie, 1997).

Nowadays, carbon black and silica are two main fillers for rubber reinforcement due to certain of active functional groups on the surface (Yiqing, et al., 2005). Besides, there are locally available materials such as limestone, eggshells, corn cobs, groundnut shells, rubber seed shells, rice husk, cocoa pod husk and cherry are amongst the underutilized renewable resources in our society today which can be used directly or converted by simple processes to valuable materials in polymer or related applications (Adeosun, 2000; Adewisi, 1997; Osabohien, et al., 2004; Ishak and Bakar, 1995; Imanah and Okieimen, 2003; Jideonwo and Utuk, 2000; Ogunniyi, 1989).

1.2 **Problem Statement**

by original The morphology study of the polymer particularly elastomer in blend is important to understand. The interface adhesion between natural rubber and low density polyethylene phases that the blend is unpredictable and very hard to dominate. Also the fillers dispersion in LDPE/NR blend is unclear. The components concentration in composite affects composite properties but that in the blends cannot be measured and controlled. Through the above mentioned the properties composites could be difficult to tailor.

This study used elastomer composite that consists of 30 phr NR and 70 phr LDPE with different types of fillers. Those fillers are Silica (inorganic filler), Coconut Husk and Corn Starch (organic). The filler content that was using 10 phr, 20 phr and 30 phr and mixed into LDPE/NR matrix with three mixing methods.