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2.1 Introduction 

 

In this chapter, carry save adder materials has been studied. The understanding 

of this design has been explained in details. The characteristics of achieving high-speed 

design circuit being explained. 

 

 

 

2.2 Multioperand Carry-Save Adder (CSA) [1] [5] 

 

Carry save adder (CSA) is the design of a high-speed multioperand adder. A 

carry save adder consists of a ladder of stand-alone full adders as shown in the figure 

2.1. The n-bit CSA consists of n disjoint full adders (FAs) where each of which 

computes a single sum and carry bit based on the corresponding bits of the three input 

numbers. It consumes three n-bit input integers to be added and produces two outputs, 

n-bit partial sum and n-bit carry. Unlike the normal adders such as ripple carry adder, a 

CSA consists of multiple one-bit full adders without any carry chaining. 

 

Carry save adder also known as (3, 2) counter where the addends are three. The 

carry save adder block diagram can be seen in the figure 2.2. It sums three 4-bits inputs, 

and returns the result as two 4-bits output. 3:2 counter can be used to speed up the 

summation of three or more addends. 3:2 counter can be used to speed up the 

summation of three or more addends. If the addends are four or more, more than one 
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layer of counter is necessary and there are various possible design for the circuit which 

the most common are Dadda and Wallace trees [1] [2]. 

 

 
Figure 2.1: The 1-bit carry save adder block is the same circuit as a full adder. 

 

 

 

A B Cin

3,2 counter

Cout Sum 

Figure 2.2: The 4-bits carry save adder block diagram 

 

 

A carry save adder is a different thing all together. A CSA instead of trying to 

solve the addition problem, it solves a different problem. All a CSA does is converts the 

problem of adding three numbers together into a problem of adding two numbers 

together. 

 

A carry-save adder may be implemented in several different ways. In the 

simplest implementation, the basic element of the carry-save adder is a full adder with 

three A, B and C inputs can describe Equation 1.0 whose arithmetic output operation. 

The truth table of CSA can be seen in Table 2.1. Mod displays or remainder, of x/y 

which using for binary operator. For example, to find 5 divided to 3, click 5 mod 3= 

which equals 2. The equation 2.0 used if the calculation is in hexadecimal operator. 

 

2
)(2mod)( SumCBACoutandCBASum −++

=++=                (1.0) 
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SumCoutCBA +=++ 2       (2.0) 

 

Table 2.1: Truth table of 1-bit CSA 

0 0 0 0 0 0+0+0=00
0 0 1 0 1 0+0+1=01
0 1 0 0 1 0+1+0=01
0 1 1 1 0 0+1+1=10
1 0 0 0 1 1+0+0=01
1 0 1 1 0 1+0+1=10
1 1 0 1 0 1+1+0=10
1 1 1 1 1 1+1+1=11

INPUT OUTPUT

Comments
A B C Cout Sum

 
 

 

 

2.3 Number Systems 

 

A numeral is a single symbol that represents a quantity or number. A 

number system is a way of assigning combinations of numerals to different 

quantities. The act of assigning combinations of numerals to different through 

the use of a number system is called counting. Human being happens to have 10 

fingers, five in each hand, which has resulted in the use of the base 10 or decimal 

number system by most cultures. In fact the word digit comes from the Latin 

digitus, meaning finger.  

 

By regular way, the inputs add each column and bring the carries over to 

the next column (Cn + An + Bn = {Cn+1, SUMn}). This calculation can also be 

done if we separately produce the sum and carry bits and add them at the end. 

Independently, for each column produce a sum and carry bit with a normal full 

adder. 
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Figure 2.3: The example calculation of CSA 

 

 

In the binary system, there are only two digits, 0 and 1. Binary digits are 

called bits (for binary digit). The value of each digit position in a binary numbers 

is exactly double that of the position to its right and exactly one-half that of the 

position to its left. A 0 and 1 can mean the numerals 0 and 1, or 0 can means 

false and 1 can mean true. 0 can mean off and 1 can mean on. The interpretations 

we may assign to the symbols 0 and 1 are endless [35]. 

 

In any number the digit in the leftmost position is called the most 

significant digit because it carries the most value in the number. The rightmost 

digit is called the least significant digit because it carries the least value in the 

number.  

 

The hexadecimal number system has a base of sixteen; that is, it is 

composed of 16 numeric and alphabetic characters [37]. Most digital systems 

process binary data in groups that are multiples of four bits, making the 

hexadecimal very convenient because each hexadecimal digit represents a 4-bit 

binary number as listed in Table 2.2. 
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Table 2.2: Number System 

Decimal Binary Hexadecimal

0 0 0 

1 1 1 

2 10 2 

3 11 3 

4 100 4 

5 101 5 

6 110 6 

7 111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 C 

13 1101 D 

14 1110 E 

15 1111 F 

 

 

Hexadecimal number system is used primarily as a compact way of 

displaying or writing binary numbers because it is very easy to convert between 

binary and hexadecimal. As we probably aware, long binary numbers are 

difficult to read and write because it is easy to drop or transpose a bit. Since 

computers and microprocessors understand only 1s and 0s, it is necessary to use 

these digits when we program in machine “language”. Hexadecimal is widely 

used in computer and microprocessor applications. Figure 2.3 shows the 

calculations for binary (refer to equation 1.0) and also hexadecimal which refer 

to equation 2.0. 
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2.4 Basic Function of Boolean Algebra in Full Adder (FA) 

 

Carry Save adder is standing by multiple bit of full adder. Figure 2.4 shows a 

basic full adder (FA) gates logic [12]. Figure 2.5 [13] and figure 2.6 [11] [15] shows a 

modified carry save adder (CSA) gate logic [14]. The basic full adder operation of 

figure 2.4 can be stated as follows as in Equation 3 and Equation 4.  
 

          (3.0) 

          (4.0) 

 

CinBASum ⊕⊕=

CinYiXiXiYiCout
YiCinXiCinXiYiCout
)( ++=
++=

 
Figure 2.4: Full adder using XOR, OR and AND gate  

 

 
Figure 2.5: Full adder using AND and XOR gate  
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Figure 2.6: Full adder using XOR, NAND and negative-OR gate logic 

 

 

 
Figure 2.7: Full adder using XOR and NAND gate 

 

 

 
Figure 2.8: Full adder using XOR gate and 2 to 1 Multiplexer 
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The full adder circuit in the figure 2.5, 2.6, 2.7 and 2.8 that using different kind 

of gate logics has been calculating manually and the results are same as the circuit 

design in the figure 2.4 that can be seen in the Table 2.3. All of the gate logics in the 

block diagram of full adder can be calculate manually one by one based on its truth table 

as shown in Table 4a, 4b, 4c and 4d. 

 

 

Table 2.3: FA truth table 

X Y Ci Ci+1 Si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

INPUT OUTPUT

 
 

 

Table 2.4a : AND gate truth table 
XOR

inst2

 
0 0 0 

0 1 1 

1 0 1 

1 1 0 
 

Table 2.4b : negative-OR gate truth 

table      

AND2

inst

 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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Table 2.4c : NAND gate truth table 
NAND2

inst1

 
0 0 1 

0 1 1 

1 0 1 

1 1 0 
 

Table 2.4d : XOR gate truth table 
BOR2

inst

 
0 0 1 

0 1 1 

1 0 1 

1 1 0 
 

 

.5 Multilevel Carry-Save Adder 

Multilevel CSA use a number of CSAs interconnected as a multilevel adder tree 

to add 

a)

 

 

2

 

more than one number per cycle. The number of level of CSA tree determines the 

basic cycle time of the addition process [3] [4] [5] [7]. 

 

   b)  

Figure 2.9: CSA tree 
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We define a CSA tree to be a tree of CSA operators and one adder at the root of 

the tree. A CSA tree can be used to transform an arbitrary number of additions to 

produce two adding operands and the adder is used at the root of CSA tree to produce a 

final sum [8] [9] [10]. Figure 2.9 shows the 6 inputs CSA in two versions. Figure 2.9a is 

the basic CSA tree while Figure 2.9b is the CSA tree in Wallace tree. 

 

A better way to organize the CSAs, and reduce the operation time, is in the form 

of a tree commonly called Wallace tree [3] [11]. In this tree, the number of operands is 

reduced by a factor of 2/3 at each level. Let λ(l) be the maximal number of operands 

that can be added by an l-level CSA tree. λ(1)=3. Each CSA has 3 inputs and two 

outputs, hence the number of output times (3/2) will be the number of inputs, that is, the 

number of outputs in the upper level. If the number of outputs is not a multiple of 2, 

then it mod 2 indicates the number of extra outputs in the upper level. Hence λ(l) can be 

defined recursively as in Equation 5.0. Or else, the easier way, the equation 6.0 can be 

use.  

 

2mod)1(3
2

)1()( −+×⎥⎦
⎤

⎢⎣
⎡ −

= lll λλλ     (5.0) 

 

)2/3log(
)2/log(

2)
3
2.(

klevelofnumber

k l

≈

≤
     (6.0) 

 

 

For different values of l can, the maximal numbers of input operands that a CSA 

tree can add are listed in Table 2.5. 

 

One of the major speed enhancement techniques used in modern digital circuits 

is the ability to add numbers with minimal carry propagation. Based on the Table 5.0, 

we could know how many level of CSA we need to design based on the input operand. 

For example, if we want to add 9 numbers together, we can use 3 CSAs to reduce it to 6 

numbers; and then reduce 6 numbers to 4 numbers and then reduce it to 3 numbers. The 

basic idea is that three numbers can be reduced to 2, in a 3:2 compressor or also known 
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as (3,2) counters, by doing the addition while keeping the carries and the sum separate. 

This means that all of the columns can be added in parallel without relying on the result 

of the previous column, creating a two-output "adder" with a time delay that is 

independent of the size of its inputs. 

 

Table 2.5: The number of level in a CSA tree for k operands 

l λ(l) 

1 3 

2 4 

3 6 

4 9 

5 13 

6 19 

7 28 

8 42 

9 63 

10 94 

 

 

 

2.6 Ripple Carry Adder 

 

When multiple full adders are used with the carry ins and carry outs chained 

together then this is called a ripple carry adder because the correct value of the carry bit 

ripples from one bit to the next (refer to figure 2.10) [16]. It is possible to create a 

logical circuit using several full adders to add multiple-bit numbers. Each full adder 

inputs a Cin, which is the Cout of the previous adder. This kind of adder is a ripple carry 

adder, since each carry bit "ripples" to the next full adder. Note that the first (and only 

the first) full adder may be replaced by a half adder. 

 

The layout of a ripple carry adder is simple, which allows for fast design time; 

however, the ripple carry adder is relatively slow, since each full adder must wait for the 

carry bit to be calculated from the previous full adder. The gate delay can easily be 
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calculated by inspection of the full adder circuit. Following the path from Cin to Cout 

shows 2 gates that must be passed through.  

 

 

 
Figure 2.10: 4-bit ripple carry adder circuit diagram 

 

 

 

2.7 Design Circuit 

 

Figure 2.11 shows the basic design of CSA that has 4 operands in 2 levels of 

CSA. Operand means a quantity upon which a mathematical operation is performed. 

Given in 

 

 

 

 

 

 

 

 

 

 

 

 

CSA 

CSA 

RCA 

B F E 

S’

A 

C’

Figure 2.11: Basic Design of n-bit CSA 
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Figure 2.12, is a 6 input 4-bit CSA tree. Notice that each input or output line 

represents n single-bit lines. Each CSA block includes n full adders with no flip-flops. 

The left pointed arrows on the carry output lines indicate that the carries are shifted left 

for one bit position before being fed to the next stage and a 0 is entered into the LSB 

position and so on. At the bottom of the tree, a CPA (which using Ripple carry adder 

(RCA) here) is required to add the sum vector and carry vector together. When the word 

length n is very long, the ripple carry propagation in the final stage will significantly 

degrade the performance of CSA. We can connect multiple levels of CSAs in a tree 

fashion to add k numbers or operands simultaneously where k=4, 5, 6, 7, 8 and 9. Figure 

2.12 shows the clear addition method based on the CSA tree block diagram. The motive 

is to generate the design circuit result easily by manual. 

 

 

 
Figure 2.12: 6 operands of 16-bit CSA using (3,2) counter 
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2.8 Delay 

 

2.8.1 CSA 

 

To add k numbers, (k-2) CSAs are required with each additional input 

operand increasing the number of CSAs by one. Hence the area complexity of 

the CSA tree is in equation 5.0. The total delay time of a CSA tree is dependent 

on the number of levels in the tree. Each level of CSAs contributes 2  to the 

propagation delay, which is the delay time of a full adder. Hence, in equation 

6.0, l is the number of levels [3] [5]. 

g∆

 

))2( CPACSACSA AAkA +−=         (5.0) 

 

CPAgTreeCSA l ∆+∆=∆ − 2     (6.0) 

 

When adding together three or more numbers, using a carry-save adder 

followed by a ripple carry adder is faster than using two ripple carry adders. This 

is because a ripple carry adder cannot compute a sum bit without waiting for the 

previous carry bit to be produced, and thus has a delay equal to that of n full 

adders. A carry-save adder, however, produces all of its output values in parallel, 

and thus has the same delay as a single full-adder. Thus the total computation 

time (in units of full-adder delay time) for a carry-save adder plus a ripple carry 

adder is n + 1, whereas for two ripple carry adders it would be 2n [32]. 

 

 

2.8.2 Ripple Carry Adder 

 

The latency of a k-bit ripple carry adder can be derived by considering 

the worst-case signal propagation path [3] [5]. As shown in figure 2.6.a, the 

critical path usually begins at the Ao or Yo input, proceeds through the carry-

propagation chain to the leftmost FA, and terminates at the Sk-1 output. Of 

course, it is possible that for some FA implementations, the critical path might 

begin at Ck and/or terminate at Ck. However, given that the delay from the carry-
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in to carry-out is more important than from X to carry-out or from carry-in to S, 

full adder designs often minimize the delay from carry-in to carry-out, making 

the critical path. We can thus write the following equation 7.0 for the latency of 

a k-bit ripple carry adder, where TFA (input->output) represents the latency of a 

full adder on the path between its specified input and output [32]. As an 

approximation to the foregoing, we can say that the latency of a ripple carry is 

kTFA. 

 

)()()2(),( SCinTCoutCinTkCoutyxTT FAFAFAaddripple →+→×−+→=−  (7.0) 

 

 

 

2.9 Applications of CSA 

 

Carry-save arithmetic, well known from multiplier architectures, can be 

used for the efficient CMOS implementation of a much wider variety of 

algorithms for high-speed digital signal processing than multiplication [17]. 

Carry save adder has efficient concepts for implementation of high speed. [18] 

[19] [20]. 

 

Carry save adders applied in the partial product lines of an array 

multiplier circuit used to speed-up the summation of the partial products in order 

to speed-up the carry propagation along the array [21] [22]. One of main time 

saving techniques used in the fastest designs is the use of carry save adders to 

combine the partial products into final answer. 

 

Carry-save represented in joint module selection and retiming 

optimization as well as optimizes technique. The use of carry-save signal 

representation is a powerful technique in the high-speed implementation of 

arithmetic circuits that solve the joint module selection and retiming problem 

[23]. 
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2.10 Advantages 

 

A carry save adder (CSA) is very fast where there is no carry propagation 

within each CSA cell. It is only the final recombination of the final carry and 

sum requires a carry propagating addition [24] that simply outputs the carry bits 

instead of propagating them to the side. Since it save all the carries from all the 

adds to the last stage and do one Carry Look-ahead Adder (CLA) or Ripple 

Carry Adder (RCA) at the end. Thus, using carry-save adders avoids carry 

propagation and will result in a higher throughput. [Minimum adder integer 

multipliers using Carry Save Adder [21]. The CSA design automatically avoids 

the delay in the carryout bits [26]. It is well known that carry-save arithmetic is a 

useful technique in the implementation of high-speed arithmetic functions. Carry 

save adder used widely in design because carry save addition saves logic and 

time.  

 

 

 

2.11 Characteristics of high-speed 

 

2.11.1 Transistor Sizing 

Increasing the transistor size improves the speed of the circuit, also 

power dissipation increases since the load capacitance increases [26]. 

2.11.2 Propagation Delay 

 

When gate inputs change, outputs don’t change instantaneously. 

This delay is known as “gate” or “propagation” delay. The delay of the 

logic gates depends on the width of the transistors in gate. The CSA 

implementation becomes much faster and also relatively smaller in size 

than the implementation of other normal basic adders [26][27]. 

 

 

 

2.11.3 CMOS Technology 
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In 2002, Mohammed Sayed and Wael Badawy [28] and in 2004, 

Amir Ali Khatibzadeh and Kaamran Raahemifar [29] present that the 

XOR and transmission gate full adder using 0.18µm CMOS Technology 

is the fastest. XOR and transmission gate is in the family of Static 

CMOS. It has 14 transistors, good noise margins, fast, and superior in 

power consumption, insensitive to device variation. In 2006, T. 

Vigneswaran, B. Mukundhan, and P. Subbarami Reddy present high-

speed new design of the fourteen Transistor (14T) adder based on Static 

energy recovery full (SERF) adder. It produced better result in threshold 

loss, speed and power which using channel length of 1.5µ and a channel 

width of 1.9µ with 1.2volt logic. It has 45% higher speed and reduces 

50% threshold loss problem [30]. 

 

 

2.11.4 Pipelining 

 

In 2004, Vinesh Sukumar, Dong Pan, Kevin Buck, Herbert Hess, 

Harry Li, Dave Cox, M.M.Mojarradi [31] present that to increase the 

frequency of operation, pipelining is considered. As the frequency of 

operation is increased, the cycle time measured in gate delays continues 

to shrink. Pipelining has emerged as the design technique of choice that 

helps to achieve high throughput digital systems. This technique breaks 

down a single complex computational block into discrete blocks 

separated by clock storage elements CSE -like flip-flops, latches. 

Pipelining improves throughput at the expense of latency, however once 

the pipe is filled we can expect one data item per unit of time. The gain in 

speed is achieved by clocking sub-circuits faster and also achieves path 

delay equalization by inserting registers. As result, it achieve 

performance gains also the propagation delay and delay variation 

decreasing. The project used the applications of pipeline to achieve the 

objective. 
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Figure 2.13: Pipeline applications in 16-bit CSA 

 

 

Figure 2.13 shows how pipeline applications in CSA circuit based 

on CSA per stage. The design is in 3 stages of 6 operands 16-bit CSA. 

Latches between stages 1 and 2 store intermediate results of step 1 “Used 

by stage 2 to execute step 2 of algorithm”. Stage 1 starts executing step 1 

on next set of operands X,Y. Pipeline was just another transformation 

which is adding the delay and retiming it based on clock using D-flip-

flop. 

 

 
Figure 2.14: Pipelining Timing Diagram 

 

 

  Pipeline shows how it reduces delay by multiple are overlap in 

execution. Based on the figure 2.14, when the inputs were given, the 

operation 1 execute at the 0 time in ladder. The process transforms 

continuously at the end of 3τ times at the stage 3 of pipeline. Without 

pipeline, the operation 2 would execute at the 3τ times. But in this 

diagram, the operation 2 execute next to the operation 1 has begun. Thus, 
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the delay can be reduced. The process continuously executes per stage as 

explained. 

 

In digital circuits, the flip-flop is an electronic circuit which has 

two stable states and thereby is capable of serving as one bit of memory. 

A flip-flop is controlled by one or two control signals and/or a gate or 

clock signal. The output often includes the complement as well as the 

normal output. As flip-flops are implemented electronically, they 

naturally also require power and ground connections.  

 

Flip-flops can be either simple or clocked. Clocked devices are 

specially designed for synchronous (time-discrete) systems and therefore 

ignores its inputs except at the transition of a dedicated clock signal 

(known as clocking, pulsing, or strobing). This causes the flip-flop to 

either change or retain its output signal based upon the values of the input 

signals at the transition. Some flip-flops change output on the rising edge 

of the clock, others on the falling edge. 

 

These flip flops are very useful, as they form the basis for shift 

registers, which are an essential part of many electronic devices. The 

advantage of this circuit over the D-type latch is that it "captures" the 

signal at the moment the clock goes high, and subsequent changes of the 

data line do not matter, even if the signal line has not yet gone low again. 

The D flip-flop can be interpreted as a primitive delay line or zero-order 

hold, since the data is posted at the output one clock cycle after it arrives 

at the input. It is called delay flip flop since the output takes the value in 

the Data-in.. The corresponding of truth table shown in Table 2.6 

 

Table 2.6 : Truth Table of D Flip-Flop 

 D Q > Qnext

0 X Rising 0 

1 X Rising 1 
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