

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, carry save adder materials has been studied. The understanding

of this design has been explained in details. The characteristics of achieving high-speed

design circuit being explained.

2.2 Multioperand Carry-Save Adder (CSA) [1] [5]

Carry save adder (CSA) is the design of a high-speed multioperand adder. A

carry save adder consists of a ladder of stand-alone full adders as shown in the figure

2.1. The n-bit CSA consists of n disjoint full adders (FAs) where each of which

computes a single sum and carry bit based on the corresponding bits of the three input

numbers. It consumes three n-bit input integers to be added and produces two outputs,

n-bit partial sum and n-bit carry. Unlike the normal adders such as ripple carry adder, a

CSA consists of multiple one-bit full adders without any carry chaining.

Carry save adder also known as (3, 2) counter where the addends are three. The

carry save adder block diagram can be seen in the figure 2.2. It sums three 4-bits inputs,

and returns the result as two 4-bits output. 3:2 counter can be used to speed up the

summation of three or more addends. 3:2 counter can be used to speed up the

summation of three or more addends. If the addends are four or more, more than one

 3

layer of counter is necessary and there are various possible design for the circuit which

the most common are Dadda and Wallace trees [1] [2].

Figure 2.1: The 1-bit carry save adder block is the same circuit as a full adder.

A B Cin

3,2 counter

Cout Sum

Figure 2.2: The 4-bits carry save adder block diagram

A carry save adder is a different thing all together. A CSA instead of trying to

solve the addition problem, it solves a different problem. All a CSA does is converts the

problem of adding three numbers together into a problem of adding two numbers

together.

A carry-save adder may be implemented in several different ways. In the

simplest implementation, the basic element of the carry-save adder is a full adder with

three A, B and C inputs can describe Equation 1.0 whose arithmetic output operation.

The truth table of CSA can be seen in Table 2.1. Mod displays or remainder, of x/y

which using for binary operator. For example, to find 5 divided to 3, click 5 mod 3=

which equals 2. The equation 2.0 used if the calculation is in hexadecimal operator.

2
)(2mod)(SumCBACoutandCBASum −++

=++= (1.0)

 4

SumCoutCBA +=++ 2 (2.0)

Table 2.1: Truth table of 1-bit CSA

0 0 0 0 0 0+0+0=00
0 0 1 0 1 0+0+1=01
0 1 0 0 1 0+1+0=01
0 1 1 1 0 0+1+1=10
1 0 0 0 1 1+0+0=01
1 0 1 1 0 1+0+1=10
1 1 0 1 0 1+1+0=10
1 1 1 1 1 1+1+1=11

INPUT OUTPUT

Comments
A B C Cout Sum

2.3 Number Systems

A numeral is a single symbol that represents a quantity or number. A

number system is a way of assigning combinations of numerals to different

quantities. The act of assigning combinations of numerals to different through

the use of a number system is called counting. Human being happens to have 10

fingers, five in each hand, which has resulted in the use of the base 10 or decimal

number system by most cultures. In fact the word digit comes from the Latin

digitus, meaning finger.

By regular way, the inputs add each column and bring the carries over to

the next column (Cn + An + Bn = {Cn+1, SUMn}). This calculation can also be

done if we separately produce the sum and carry bits and add them at the end.

Independently, for each column produce a sum and carry bit with a normal full

adder.

 5

600110
1911001
1201100

C
B
A

+
+

2*601100
2510011

Carrybits
bitsSum

37110111resultFinal

Figure 2.3: The example calculation of CSA

In the binary system, there are only two digits, 0 and 1. Binary digits are

called bits (for binary digit). The value of each digit position in a binary numbers

is exactly double that of the position to its right and exactly one-half that of the

position to its left. A 0 and 1 can mean the numerals 0 and 1, or 0 can means

false and 1 can mean true. 0 can mean off and 1 can mean on. The interpretations

we may assign to the symbols 0 and 1 are endless [35].

In any number the digit in the leftmost position is called the most

significant digit because it carries the most value in the number. The rightmost

digit is called the least significant digit because it carries the least value in the

number.

The hexadecimal number system has a base of sixteen; that is, it is

composed of 16 numeric and alphabetic characters [37]. Most digital systems

process binary data in groups that are multiples of four bits, making the

hexadecimal very convenient because each hexadecimal digit represents a 4-bit

binary number as listed in Table 2.2.

 6

Table 2.2: Number System

Decimal Binary Hexadecimal

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Hexadecimal number system is used primarily as a compact way of

displaying or writing binary numbers because it is very easy to convert between

binary and hexadecimal. As we probably aware, long binary numbers are

difficult to read and write because it is easy to drop or transpose a bit. Since

computers and microprocessors understand only 1s and 0s, it is necessary to use

these digits when we program in machine “language”. Hexadecimal is widely

used in computer and microprocessor applications. Figure 2.3 shows the

calculations for binary (refer to equation 1.0) and also hexadecimal which refer

to equation 2.0.

 7

2.4 Basic Function of Boolean Algebra in Full Adder (FA)

Carry Save adder is standing by multiple bit of full adder. Figure 2.4 shows a

basic full adder (FA) gates logic [12]. Figure 2.5 [13] and figure 2.6 [11] [15] shows a

modified carry save adder (CSA) gate logic [14]. The basic full adder operation of

figure 2.4 can be stated as follows as in Equation 3 and Equation 4.

 (3.0)

 (4.0)

CinBASum ⊕⊕=

CinYiXiXiYiCout
YiCinXiCinXiYiCout
)(++=
++=

Figure 2.4: Full adder using XOR, OR and AND gate

Figure 2.5: Full adder using AND and XOR gate

 8

Figure 2.6: Full adder using XOR, NAND and negative-OR gate logic

Figure 2.7: Full adder using XOR and NAND gate

Figure 2.8: Full adder using XOR gate and 2 to 1 Multiplexer

 9

The full adder circuit in the figure 2.5, 2.6, 2.7 and 2.8 that using different kind

of gate logics has been calculating manually and the results are same as the circuit

design in the figure 2.4 that can be seen in the Table 2.3. All of the gate logics in the

block diagram of full adder can be calculate manually one by one based on its truth table

as shown in Table 4a, 4b, 4c and 4d.

Table 2.3: FA truth table

X Y Ci Ci+1 Si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

INPUT OUTPUT

Table 2.4a : AND gate truth table
XOR

inst2

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.4b : negative-OR gate truth

table

AND2

inst

0 0 0

0 1 0

1 0 0

1 1 1

 10

Table 2.4c : NAND gate truth table
NAND2

inst1

0 0 1

0 1 1

1 0 1

1 1 0

Table 2.4d : XOR gate truth table
BOR2

inst

0 0 1

0 1 1

1 0 1

1 1 0

.5 Multilevel Carry-Save Adder

Multilevel CSA use a number of CSAs interconnected as a multilevel adder tree

to add

a)

2

more than one number per cycle. The number of level of CSA tree determines the

basic cycle time of the addition process [3] [4] [5] [7].

 b)

Figure 2.9: CSA tree

 11

We define a CSA tree to be a tree of CSA operators and one adder at the root of

the tree. A CSA tree can be used to transform an arbitrary number of additions to

produce two adding operands and the adder is used at the root of CSA tree to produce a

final sum [8] [9] [10]. Figure 2.9 shows the 6 inputs CSA in two versions. Figure 2.9a is

the basic CSA tree while Figure 2.9b is the CSA tree in Wallace tree.

A better way to organize the CSAs, and reduce the operation time, is in the form

of a tree commonly called Wallace tree [3] [11]. In this tree, the number of operands is

reduced by a factor of 2/3 at each level. Let λ(l) be the maximal number of operands

that can be added by an l-level CSA tree. λ(1)=3. Each CSA has 3 inputs and two

outputs, hence the number of output times (3/2) will be the number of inputs, that is, the

number of outputs in the upper level. If the number of outputs is not a multiple of 2,

then it mod 2 indicates the number of extra outputs in the upper level. Hence λ(l) can be

defined recursively as in Equation 5.0. Or else, the easier way, the equation 6.0 can be

use.

2mod)1(3
2

)1()(−+×⎥⎦
⎤

⎢⎣
⎡ −

= lll λλλ (5.0)

)2/3log(
)2/log(

2)
3
2.(

klevelofnumber

k l

≈

≤
 (6.0)

For different values of l can, the maximal numbers of input operands that a CSA

tree can add are listed in Table 2.5.

One of the major speed enhancement techniques used in modern digital circuits

is the ability to add numbers with minimal carry propagation. Based on the Table 5.0,

we could know how many level of CSA we need to design based on the input operand.

For example, if we want to add 9 numbers together, we can use 3 CSAs to reduce it to 6

numbers; and then reduce 6 numbers to 4 numbers and then reduce it to 3 numbers. The

basic idea is that three numbers can be reduced to 2, in a 3:2 compressor or also known

 12

as (3,2) counters, by doing the addition while keeping the carries and the sum separate.

This means that all of the columns can be added in parallel without relying on the result

of the previous column, creating a two-output "adder" with a time delay that is

independent of the size of its inputs.

Table 2.5: The number of level in a CSA tree for k operands

l λ(l)

1 3

2 4

3 6

4 9

5 13

6 19

7 28

8 42

9 63

10 94

2.6 Ripple Carry Adder

When multiple full adders are used with the carry ins and carry outs chained

together then this is called a ripple carry adder because the correct value of the carry bit

ripples from one bit to the next (refer to figure 2.10) [16]. It is possible to create a

logical circuit using several full adders to add multiple-bit numbers. Each full adder

inputs a Cin, which is the Cout of the previous adder. This kind of adder is a ripple carry

adder, since each carry bit "ripples" to the next full adder. Note that the first (and only

the first) full adder may be replaced by a half adder.

The layout of a ripple carry adder is simple, which allows for fast design time;

however, the ripple carry adder is relatively slow, since each full adder must wait for the

carry bit to be calculated from the previous full adder. The gate delay can easily be

 13

calculated by inspection of the full adder circuit. Following the path from Cin to Cout

shows 2 gates that must be passed through.

Figure 2.10: 4-bit ripple carry adder circuit diagram

2.7 Design Circuit

Figure 2.11 shows the basic design of CSA that has 4 operands in 2 levels of

CSA. Operand means a quantity upon which a mathematical operation is performed.

Given in

CSA

CSA

RCA

B F E

S’

A

C’

Figure 2.11: Basic Design of n-bit CSA

 14

Figure 2.12, is a 6 input 4-bit CSA tree. Notice that each input or output line

represents n single-bit lines. Each CSA block includes n full adders with no flip-flops.

The left pointed arrows on the carry output lines indicate that the carries are shifted left

for one bit position before being fed to the next stage and a 0 is entered into the LSB

position and so on. At the bottom of the tree, a CPA (which using Ripple carry adder

(RCA) here) is required to add the sum vector and carry vector together. When the word

length n is very long, the ripple carry propagation in the final stage will significantly

degrade the performance of CSA. We can connect multiple levels of CSAs in a tree

fashion to add k numbers or operands simultaneously where k=4, 5, 6, 7, 8 and 9. Figure

2.12 shows the clear addition method based on the CSA tree block diagram. The motive

is to generate the design circuit result easily by manual.

Figure 2.12: 6 operands of 16-bit CSA using (3,2) counter

 15

2.8 Delay

2.8.1 CSA

To add k numbers, (k-2) CSAs are required with each additional input

operand increasing the number of CSAs by one. Hence the area complexity of

the CSA tree is in equation 5.0. The total delay time of a CSA tree is dependent

on the number of levels in the tree. Each level of CSAs contributes 2 to the

propagation delay, which is the delay time of a full adder. Hence, in equation

6.0, l is the number of levels [3] [5].

g∆

))2(CPACSACSA AAkA +−= (5.0)

CPAgTreeCSA l ∆+∆=∆ − 2 (6.0)

When adding together three or more numbers, using a carry-save adder

followed by a ripple carry adder is faster than using two ripple carry adders. This

is because a ripple carry adder cannot compute a sum bit without waiting for the

previous carry bit to be produced, and thus has a delay equal to that of n full

adders. A carry-save adder, however, produces all of its output values in parallel,

and thus has the same delay as a single full-adder. Thus the total computation

time (in units of full-adder delay time) for a carry-save adder plus a ripple carry

adder is n + 1, whereas for two ripple carry adders it would be 2n [32].

2.8.2 Ripple Carry Adder

The latency of a k-bit ripple carry adder can be derived by considering

the worst-case signal propagation path [3] [5]. As shown in figure 2.6.a, the

critical path usually begins at the Ao or Yo input, proceeds through the carry-

propagation chain to the leftmost FA, and terminates at the Sk-1 output. Of

course, it is possible that for some FA implementations, the critical path might

begin at Ck and/or terminate at Ck. However, given that the delay from the carry-

 16

in to carry-out is more important than from X to carry-out or from carry-in to S,

full adder designs often minimize the delay from carry-in to carry-out, making

the critical path. We can thus write the following equation 7.0 for the latency of

a k-bit ripple carry adder, where TFA (input->output) represents the latency of a

full adder on the path between its specified input and output [32]. As an

approximation to the foregoing, we can say that the latency of a ripple carry is

kTFA.

)()()2(),(SCinTCoutCinTkCoutyxTT FAFAFAaddripple →+→×−+→=− (7.0)

2.9 Applications of CSA

Carry-save arithmetic, well known from multiplier architectures, can be

used for the efficient CMOS implementation of a much wider variety of

algorithms for high-speed digital signal processing than multiplication [17].

Carry save adder has efficient concepts for implementation of high speed. [18]

[19] [20].

Carry save adders applied in the partial product lines of an array

multiplier circuit used to speed-up the summation of the partial products in order

to speed-up the carry propagation along the array [21] [22]. One of main time

saving techniques used in the fastest designs is the use of carry save adders to

combine the partial products into final answer.

Carry-save represented in joint module selection and retiming

optimization as well as optimizes technique. The use of carry-save signal

representation is a powerful technique in the high-speed implementation of

arithmetic circuits that solve the joint module selection and retiming problem

[23].

 17

2.10 Advantages

A carry save adder (CSA) is very fast where there is no carry propagation

within each CSA cell. It is only the final recombination of the final carry and

sum requires a carry propagating addition [24] that simply outputs the carry bits

instead of propagating them to the side. Since it save all the carries from all the

adds to the last stage and do one Carry Look-ahead Adder (CLA) or Ripple

Carry Adder (RCA) at the end. Thus, using carry-save adders avoids carry

propagation and will result in a higher throughput. [Minimum adder integer

multipliers using Carry Save Adder [21]. The CSA design automatically avoids

the delay in the carryout bits [26]. It is well known that carry-save arithmetic is a

useful technique in the implementation of high-speed arithmetic functions. Carry

save adder used widely in design because carry save addition saves logic and

time.

2.11 Characteristics of high-speed

2.11.1 Transistor Sizing

Increasing the transistor size improves the speed of the circuit, also

power dissipation increases since the load capacitance increases [26].

2.11.2 Propagation Delay

When gate inputs change, outputs don’t change instantaneously.

This delay is known as “gate” or “propagation” delay. The delay of the

logic gates depends on the width of the transistors in gate. The CSA

implementation becomes much faster and also relatively smaller in size

than the implementation of other normal basic adders [26][27].

2.11.3 CMOS Technology

 18

In 2002, Mohammed Sayed and Wael Badawy [28] and in 2004,

Amir Ali Khatibzadeh and Kaamran Raahemifar [29] present that the

XOR and transmission gate full adder using 0.18µm CMOS Technology

is the fastest. XOR and transmission gate is in the family of Static

CMOS. It has 14 transistors, good noise margins, fast, and superior in

power consumption, insensitive to device variation. In 2006, T.

Vigneswaran, B. Mukundhan, and P. Subbarami Reddy present high-

speed new design of the fourteen Transistor (14T) adder based on Static

energy recovery full (SERF) adder. It produced better result in threshold

loss, speed and power which using channel length of 1.5µ and a channel

width of 1.9µ with 1.2volt logic. It has 45% higher speed and reduces

50% threshold loss problem [30].

2.11.4 Pipelining

In 2004, Vinesh Sukumar, Dong Pan, Kevin Buck, Herbert Hess,

Harry Li, Dave Cox, M.M.Mojarradi [31] present that to increase the

frequency of operation, pipelining is considered. As the frequency of

operation is increased, the cycle time measured in gate delays continues

to shrink. Pipelining has emerged as the design technique of choice that

helps to achieve high throughput digital systems. This technique breaks

down a single complex computational block into discrete blocks

separated by clock storage elements CSE -like flip-flops, latches.

Pipelining improves throughput at the expense of latency, however once

the pipe is filled we can expect one data item per unit of time. The gain in

speed is achieved by clocking sub-circuits faster and also achieves path

delay equalization by inserting registers. As result, it achieve

performance gains also the propagation delay and delay variation

decreasing. The project used the applications of pipeline to achieve the

objective.

 19

Figure 2.13: Pipeline applications in 16-bit CSA

Figure 2.13 shows how pipeline applications in CSA circuit based

on CSA per stage. The design is in 3 stages of 6 operands 16-bit CSA.

Latches between stages 1 and 2 store intermediate results of step 1 “Used

by stage 2 to execute step 2 of algorithm”. Stage 1 starts executing step 1

on next set of operands X,Y. Pipeline was just another transformation

which is adding the delay and retiming it based on clock using D-flip-

flop.

Figure 2.14: Pipelining Timing Diagram

 Pipeline shows how it reduces delay by multiple are overlap in

execution. Based on the figure 2.14, when the inputs were given, the

operation 1 execute at the 0 time in ladder. The process transforms

continuously at the end of 3τ times at the stage 3 of pipeline. Without

pipeline, the operation 2 would execute at the 3τ times. But in this

diagram, the operation 2 execute next to the operation 1 has begun. Thus,

 20

the delay can be reduced. The process continuously executes per stage as

explained.

In digital circuits, the flip-flop is an electronic circuit which has

two stable states and thereby is capable of serving as one bit of memory.

A flip-flop is controlled by one or two control signals and/or a gate or

clock signal. The output often includes the complement as well as the

normal output. As flip-flops are implemented electronically, they

naturally also require power and ground connections.

Flip-flops can be either simple or clocked. Clocked devices are

specially designed for synchronous (time-discrete) systems and therefore

ignores its inputs except at the transition of a dedicated clock signal

(known as clocking, pulsing, or strobing). This causes the flip-flop to

either change or retain its output signal based upon the values of the input

signals at the transition. Some flip-flops change output on the rising edge

of the clock, others on the falling edge.

These flip flops are very useful, as they form the basis for shift

registers, which are an essential part of many electronic devices. The

advantage of this circuit over the D-type latch is that it "captures" the

signal at the moment the clock goes high, and subsequent changes of the

data line do not matter, even if the signal line has not yet gone low again.

The D flip-flop can be interpreted as a primitive delay line or zero-order

hold, since the data is posted at the output one clock cycle after it arrives

at the input. It is called delay flip flop since the output takes the value in

the Data-in.. The corresponding of truth table shown in Table 2.6

Table 2.6 : Truth Table of D Flip-Flop

 D Q > Qnext

0 X Rising 0

1 X Rising 1

 21

