
 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 

As this music box project involved FPGA, Verilog HDL language, and Altera 

Education Kit (UP2 Board), information on the basic of the above mentioned has to be 

studied. 

 

 

 

2.1 Introduction of FPGA  

 

Before the advent of programmable logic, custom logic circuits were built at the 

board level using standard components, or at the gate level in expensive application-

specific (custom) integrated circuits.  The FPGA is an integrated circuit that contains many 

(64 to over 10,000) identical logic cells that can be viewed as standard components.  Each 

logic cell can independently take on any one of a limited set of personalities.  The 

individual cells are interconnected by a matrix of wires and programmable switches.  A 

user's design is implemented by specifying the simple logic function for each cell and 

selectively closing the switches in the interconnect matrix.  The array of logic cells and 

interconnects form a fabric of basic building blocks for logic circuits.  Complex designs are 

created by combining these basic blocks to create the desired circuit [9][14]. 
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2.1.1 Function of a logic cell  

 

The logic cell architecture varies between different device families.  Generally 

speaking, each logic cell combines a few binary inputs (typically between 3 and 10) to one 

or two outputs according to a boolean logic function specified in the user program.  In most 

families, the user also has the option of registering the combinatorial output of the cell, so 

that clocked logic can be easily implemented.   The cell's combinatorial logic may be 

physically implemented as a small look-up table memory (LUT) or as a set of multiplexers 

and gates. LUT devices tend to be a bit more flexible and provide more inputs per cell than 

multiplexer cells at the expense of propagation delay [9][14]. 

 

 

 

2.1.2 Field Programmable  

 

Field Programmable means that the FPGA's function is defined by a user's program 

rather than by the manufacturer of the device.  A typical integrated circuit performs a 

particular function defined at the time of manufacture.  In contrast, the FPGA's function is 

defined by a program written by someone other than the device manufacturer.  Depending 

on the particular device, the program is either 'burned' in permanently or semi-permanently 

as part of a board assembly process, or is loaded from an external memory each time the 

device is powered up.  This user programmability gives the user access to complex 

integrated designs without the high engineering costs associated with application specific 

integrated circuits [9][14]. 

 

 

 

2.1.3 Creation of FPGA Programs  

 

Individually defining the many switch connections and cell logic functions would be 

a daunting task.  Fortunately, this task is handled by special software.  The software 
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translates a user's schematic diagrams or textual hardware description language code then 

places and routes the translated design. Most of the software packages have hooks to allow 

the user to influence implementation, placement and routing to obtain better performance 

and utilization of the device.  Libraries of more complex function macros (eg. adders) 

further simplify the design process by providing common circuits that are already optimized 

for speed or area [9][14]. 

 

 

 

2.2 Introduction of UP2 Education Kit  

 

The University Program UP2 Education Kit was designed to meet the needs of 

universities teaching digital logic design with state-of-the-art development tools and 

programmable logic devices (PLDs). The package provides all of the necessary tools for 

creating and implementing digital logic designs, including the following features: 

 

■  Quartus® II Web-Edition development software 

■  UP2 Education Board 

– An EPF10K70 device in a 240-pin power quad flat pack (RQFP) package 

– An EPM7128S device in an 84-pin plastic J-lead chip carrier (PLCC) package 

■  ByteBlasterTM II parallel ports download cable 

 

 

 

2.2.1 UP2 Education Board  

 

The UP2 Education Board is a stand-alone experiment board based on a FLEX® 

10K device and includes a MAX® 7000 device. When used with the Quartus II software, 

the board provides a superior platform for learning digital logic design using industry-

standard development tools and PLDs. 
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The board is designed to meet the needs of instructors and students in a laboratory 

environment. The UP2 Education Board supports both look-up table (LUT) -based and 

product term-based architectures. The EPF10K70 device can be configured in-system with 

either the ByteBlaster II download cable or an EPC1 configuration device. Additional 

download cables can be purchased separately. The EPM7128S device can be programmed 

in-system with the ByteBlaster II download cable [2][3]. 

 

 

 

2.2.1.1 EPF10K70 Device  

 

The EPF10K70 device is based on SRAM technology. It is available in a 240-pin 

RQFP package and has 3,744 logic elements (LEs) and nine embedded array blocks (EABs). 

Each LE consists of a four-input LUT, a programmable flipflop, and dedicated signal paths 

for carry-and-cascade functions. Each EAB provides 2,048 bits of memory which can be 

used to create RAM, ROM, or first-in first-out (FIFO) functions. EABs can also implement 

logic functions, such as multipliers, microcontrollers, state machines, and digital signal 

processing (DSP) functions. With 70,000 typical gates, the EPF10K70 device is ideal for 

intermediate to advanced digital design courses, including computer architecture, 

communications, and DSP applications [2][3]. 

 

 

 

2.2.1.2 EPM7128S Device  

 

The EPM7128S device, a member of the high-density, high-performance MAX 

7000S family, is based on erasable programmable read-only memory (EEPROM) elements. 

The EPM7128S device features a socket mounted 84-pin plastic j-lead chip carrier (PLCC) 

package and has 128 macro-cells. Each macro-cell has a programmable-AND/fixed-OR 

array as well as a configurable register with independently-programmable clock, clock 

enable, clear, and preset functions. With a capacity of 2,500 gates and a simple architecture, 
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the EPM7128S device is ideal for introductory designs as well as larger combinatorial and 

sequential logic functions [2][3]. 

 

 

 

2.2.1.3 ByteBlaster II Parallel Port Download Cable  

 

Designs can be easily and quickly downloaded into the UP2 Education Board using 

the ByteBlaster II download cable, which is a hardware interface to a standard parallel port. 

This cable sends programming or configuration data between the Quartus II software and 

the UP2 Education Board. Because design changes are downloaded directly to the devices 

on the board, prototyping is easy and multiple design iterations can be accomplished in 

quick succession [2][3]. 

 

 

 

2.2.2 UP2 Education Board Description  

 

The UP2 Education Board, shown in Figure 2.0, contains the features described in 

this section 

 

 

 
Figure 2.0: UP2 Educational Board Block Diagram [3]. 
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2.2.2.1 DC_IN & RAW Power Input  

 

The DC_IN power input accepts a 2.5-mm × 5.55-mm female connector. The 

acceptable DC input is 7 to 9 V at a minimum of 350 mA. The RAW power input consists 

of two holes for connecting an unregulated power source. The hole marked with a plus sign 

(+) is the positive input; the hole marked with a minus sign (–) is board-common [2][3]. 

 

 

 

2.2.2.2 Oscillator  

 

The UP2 Education Board contains a 25.175-MHz crystal oscillator. The output of 

the oscillator drives a global clock input on the EPM7128S device (pin 83) and a global 

clock input on the FLEX 10K device (pin 91) [2][3]. 

 

 

 

2.2.2.3 JTAG_IN Header  

 

The 10-pin female plug on the ByteBlaster II download cable connects with the 

JTAG_IN 10-pin male header on the UP2 Education Board. The board provides power and 

ground to the ByteBlaster II download cable. Data is shifted into the devices via the TDI 

pin and shifted out of the devices via the TDO pin. Table 1 identifies the JTAG_IN pin 

names when the ByteBlaster II is operating in Joint Test Action Group (JTAG) mode [2][3]. 
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Table 2.0: JTAG_IN 10-Pin Header Pin-Outs [3]. 

 
 

 

 

2.2.2.4 Jumpers  

 

The UP2 Education Board has four three-pin jumpers (TDI, TDO, DEVICE, and 

BOARD) that set the JTAG configuration. The JTAG chain can be set for a variety of 

configurations (i.e., to program only the EPM7128S device, to configure only the FLEX 

10K device, to configure and program both devices, or to connect multiple UP2 Education 

Boards together). Figure 2.1 shows the positions of the three connectors (C1, C2, and C3) 

on each of the four jumpers. Table 2.1 defines the settings for each configuration [2][3]. 

 

 

 
Figure 2.1: Position of C1, C2 & C3 Connectors [3]. 

 

 

 

 

 10



Table 2.1: JTAG Jumper Settings [3]. 

 
 

 

Notes to Table 2.1: 

(1) The first device in the JTAG chain is the FLEX 10K device, and the second device is 

the EPM7128S device. 

 

(2) The first device in the JTAG chain is the FLEX 10K device, and the second device is 

the EPM7128S device. The last board in the chain must be set for a single board 

configuration (i.e., for programming only the EPM7128S device, configuring only the 

FLEX 10K device, or configuring/programming both devices). The last board cannot     

be set for connecting multiple boards together. During configuration, the green 

CONF_D LED will turn off and the green TCK LED will modulate to indicate that data 

is transferring. After the device has successfully configured, the CONF_D LED will 

illuminate [2][3]. 

 

 

 

2.2.2.5 EPM7128S Device  

 

The UP2 Education Board provides the following resources for the EPM7128S 

device. 

 

■  Socket-mounted 84-pin PLCC package 

■  Signal pins that are accessible via female headers 
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■  JTAG chain connection for the ByteBlaster II cable 

■  Two momentary push-button switches 

■  Two octal dual inline package (DIP) switches 

■  16 LEDs 

■  Dual-digit seven-segment display 

■  On-board oscillator (25.175 MHz) 

■  Expansion port with 42 I/O pins and the dedicated global CLR, OE1, and 2/GCLK2 

pins  

 

Pins from the EPM7128S device are not pre-assigned to switches and LEDs, but are instead 

connected to female headers. With direct access to the pins, students can oncentrate on 

design fundamentals and learn about the programmability of I/O pins and PLDs. After 

successfully compiling and verifying a design with the Quartus II software, students can 

easily connect the assigned I/O pins to the switches and LEDs using a common hook-up 

wire. Students can then download their design into the device and compare their design’s 

simulation to the actual hardware implementation [2][3]. 

 

 

 

2.2.2.6 EPM7128S Prototyping Headers  

 

The EPM7128S prototyping headers are female headers that surround the device 

and provide access to the device’s signal pins. The 21 pins on each side of the 84-pin PLCC 

package connect to one of the 22-pin, dual-row 0.1-inch female headers. The pin numbers 

for the EPM7128S device are printed on the UP2 Education Board (an “X” indicates an 

unassigned pin). Table 2.2 lists the pin numbers for the four female headers: P1, P2, P3, and 

P4. The power, ground, and JTAG signal pins are not accessible through these female 

headers [2][3]. 
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Table 2.2: Pin umbers for Each Prototyping Header [3]. 

 
 

 

 

2.2.2.7 MAX_PB1 & MAX_PB2 Push-Buttons  

 

MAX_PB1 and MAX_PB2 are two push-buttons that provide active-low signals 

and are pulled-up through 10-KΩ resistors. Connections to these signals are easily made by 

inserting one end of the hook-up wire into the push-button female header. The other end of 

the hook-up wire should be inserted into the appropriate female header assigned to the I/O 

pin of the EPM7128S device [2][3]. 

 

 

 

2.2.2.8 MAX_SW1 & MAX_SW2 Switches  

 

MAX_SW1 and MAX_SW2 each contain eight switches that provide logic level 

signals. These switches are pulled-up through 10-KΩ resistors. Connections to these signals 

are made by inserting one end of the hookup wire into the female header aligned with the 

appropriate switch. Insert the other end of the hook-up wire into the appropriate female 
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header assigned to the I/O pin of the EPM7128S device. The switch output is set to logic 1 

when the switch is open and set to logic 0 when the switch is closed [2][3]. 

 

 

  

2.2.2.9 FLEX10K Device  

 

The UP2 Education Board provides the following resources for the FLEX 10K 

device. The pins from the FLEX 10K device are pre-assigned to switches and LEDs on the 

board [2][3]. 

 

■  JTAG chain connection for the ByteBlaster II cable 

■  Socket for an EPC1 configuration device 

■  Two momentary push button switches 

■  One octal DIP switch 

■  Dual-digit seven-segment display 

■  On-board oscillator (25.175 MHz) 

■  VGA port 

■  Mouse port 

■  Three expansion ports, each with 42 I/O pins and seven global pins 

 

 

 

2.2.2.10 FLEX_PB1 & FLEX_PB2 Push Buttons  

 

FLEX_PB1 and FLEX_PB2 are two push buttons that provide active-low signals to 

two general-purpose I/O pins on the FLEX 10K device. FLEX_PB1 connects to pin 28, and 

FLEX_PB2 connects to pin 29. Each push button is pulled-up through a 10-KΩ resistor 

[2][3]. 
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2.2.2.11 FLEX_SW1 Switches  

 

FLEX_SW1 contains eight switches that provide logic-level signals to eight 

general-purpose I/O pins on the FLEX 10K device. An input pin is set to logic 1 when the 

switch is open and set to logic 0 when the switch is closed. Table 2.3 lists the pin 

assignment for each switch [2][3]. 

 

 

Table 2.3: FLEX_SW1 Pin Assignments [3]. 

 
 

 

 

2.2.2.12 FLEX_EXPAN_A, FLEX_EXPAN_B & FLEX_EXPAN_C  

 

FLEX_EXPAN_A, FLEX_EXPAN_B, and FLEX_EXPAN_C are dual rows of 0.1-

inch spaced holes for accessing signal I/O pins and global signals on the FLEX 10K device, 

power, and ground. Figure 6 shows the numbering convention for these holes [2][3]. 
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Figure 2.2: FLEX_EXPAN_A, FLEX_EXPAN_B & FLEX_EXPAN_C Numbering 

Convention [3]. 
 

 

 

2.3 Introduction of Verilog HDL   

 

Verilog HDL is a description language that can be used to model a digital system at 

many levels of abstraction ranging from the algorithmic-level to the switch-level. The 

complexity of the digital system being modeled could vary from that of a simple gate to a 

complete electronic digital system, or anything in between. The digital system can be 

described hierarchically and timing can be explicitly modeled within the same description. 

 

The Verilog HDL language includes capabilities to describe the behavioral nature of 

a design, the dataflow nature of a design, a design’s structural composition, delays and a 

waveform generation mechanism including aspects of response monitoring and verification, 

all modeled using one single language. In addition, the language provides a programming 

language interface through which the internals of a design can be accessed during 

simulation including the control of a simulation run.  

 

The language not only defines the syntax but also defines very clear simulation 

semantics for each language construct. Therefore, models written in this language can be 

verified using a Verilog simulation. The language inherits many of its operator symbols and 

constructs from the C programming language. Verilog HDL provide an extensive range of 
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modeling capabilities, some of which are quite difficult to comprehend initially. However, a 

core subset of the language is quite easy to learn and use. This is sufficient to model most 

applications. The complete language, however, has sufficient capabilities to capture the 

descriptions from the most complex chips to a complete electronic system 

[4][10][11][12][13][15][16]. 

 

 

 

2.3.1 Major Capabilities  

 

Listed below are the major capabilities of the Verilog hardware description 

language: 

 

o Primitive logic gates, such as and, or and nand, are built-in into the language. 

o Flexibility of creating a user-defined primitive (UDP). Such a primitive could either 

be a combinational logic primitive or a sequential logic primitive. 

o Switch-level modeling primitive gates, such as pmos and nmos, are also built-in into 

the language. 

o Explicit language constructs are provided for specifying pin-to-pin delays, path 

delays and timing checks of a design. 

o A design can be modeled in three different styles or in a mixed style. These styles 

are:  behavioral style - modeled using procedural constructs; dataflow style – 

modeled using continuous assignments; and structural style – modeled using gate 

and module instantiations. 

o There are two data types in Verilog HDL; the net data type and the register data type. 

The net type represents a physical connection between structural element while a 

register type represents an abstract data storage element. 

o Hierarchical design can be described, up to any level, using the module instantiation 

construct. 

o A design can be of arbitrary size; the language does not impose a limit. 

o Verilog HDL is non-proprietary and is an IEEE standard. 
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o It is human and machine readable. Thus it can be used as an exchange language 

between tools and designers. 

o The capabilities of the Verilog HDL language can be further extended by using the 

programming language interface (PLI) mechanism. PLI is a collection of routines 

that allow foreign functions to access information within a Verilog module and 

allows for designer interaction with the simulator. 

o A design can be described in a wide range of levels, raging from switch-level, gate-

level, register-transfer-level (RTL) to algorithmic-level, including process and 

queuing-level. 

o A design can be modeled entirely at the switch-level using the built-in switch-level 

primitives. 

o The same single language can be used to generate stimulus for the design and for 

specifying test constraints, such as specifying the values of inputs. 

o Verilog HDL can be used to perform response monitoring of the design under test, 

that values of a design under test can be monitored and displayed. These values can 

also be complete with expected values, and in case of a mismatch, a report message 

can be printed. 

o At the behavioral-level, Verilog HDL can be used to describe a design not only at 

the RTL-level, but also at the architectural-level and its algorithmic-level behavior. 

o At the structure-level, gate and module instantiations can be used 

[4][10][11][12][13][15][16]. 

 

 

 

2.4 Introduction to Quartus II  

 

The Altera® Quartus® II design software provides a complete, multiplatform 

design environment that easily adapts to user specific design needs. It is a comprehensive 

environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software 

includes solutions for all phases of FPGA and CPLD design (Figure 2.3). 
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Figure 2.3: Quartus II Design Flow [1]. 

 

 

In addition, the Quartus II software allows all user use the Quartus II graphical user 

interface and command-line interface for each phase of the design flow. User can use one of 

these interfaces for the entire flow, or use different options at different phases [1]. 

 

 

 

2.4.1 Graphical User Interface Design Flow  

 

Quartus II software can perform all stages of the design flow; it is a complete, easy-

to-use, stand-alone solution. Figure 2.4 shows the Quartus II graphical user interface as it 

appears when you first start the software [1]. 
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Figure 2.4 Quartus II Graphical User Interface [1]. 

 

 

The Quartus II software includes a modular Compiler. The Compiler includes the 

following modules (modules marked with an asterisk are optional during a full compilation, 

depending on user settings): 

 

■ Analysis & Synthesis 

■ Partition Merge* 

■ Fitter 

■ Assembler* 

■ Classic Timing Analyzer and TimeQuest Timing Analyzer* 

■ Design Assistant* 

■ EDA Netlist Writer* 

■ HardCopy® Netlist Writer* 

 

To run all Compiler modules as part of a full compilation, on the processing menu 

click Start Compilation. User also can run each module individually by pointing to start of 

the Processing menu then clicking the command for the module that user want to start. User 

also can run some of the Compiler modules incrementally. In addition, to start the Compiler 
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modules individually, click Compiler Tool on the Tools menu and run each module from 

the Compiler Tool window (Figure 2.5). The Compiler Tool window also allows user to 

open the settings file or report file for the module, or to open other related windows [1]. 

 

 

 
Figure 2.5: Compiler Tool Window [1]. 

 

 

The Quartus II software also provides predefined compilation flows that user can 

use with commands from the Processing menu. Table 2.3 lists the commands for some of 

the most common compilation flows [1]. 

 

 

Table 2.4: Commands for Common Compiler Flows [1]. 
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