

CHAPTER 2

LITERATURE REVIEW

As this music box project involved FPGA, Verilog HDL language, and Altera

Education Kit (UP2 Board), information on the basic of the above mentioned has to be

studied.

2.1 Introduction of FPGA

Before the advent of programmable logic, custom logic circuits were built at the

board level using standard components, or at the gate level in expensive application-

specific (custom) integrated circuits. The FPGA is an integrated circuit that contains many

(64 to over 10,000) identical logic cells that can be viewed as standard components. Each

logic cell can independently take on any one of a limited set of personalities. The

individual cells are interconnected by a matrix of wires and programmable switches. A

user's design is implemented by specifying the simple logic function for each cell and

selectively closing the switches in the interconnect matrix. The array of logic cells and

interconnects form a fabric of basic building blocks for logic circuits. Complex designs are

created by combining these basic blocks to create the desired circuit [9][14].

 4

2.1.1 Function of a logic cell

The logic cell architecture varies between different device families. Generally

speaking, each logic cell combines a few binary inputs (typically between 3 and 10) to one

or two outputs according to a boolean logic function specified in the user program. In most

families, the user also has the option of registering the combinatorial output of the cell, so

that clocked logic can be easily implemented. The cell's combinatorial logic may be

physically implemented as a small look-up table memory (LUT) or as a set of multiplexers

and gates. LUT devices tend to be a bit more flexible and provide more inputs per cell than

multiplexer cells at the expense of propagation delay [9][14].

2.1.2 Field Programmable

Field Programmable means that the FPGA's function is defined by a user's program

rather than by the manufacturer of the device. A typical integrated circuit performs a

particular function defined at the time of manufacture. In contrast, the FPGA's function is

defined by a program written by someone other than the device manufacturer. Depending

on the particular device, the program is either 'burned' in permanently or semi-permanently

as part of a board assembly process, or is loaded from an external memory each time the

device is powered up. This user programmability gives the user access to complex

integrated designs without the high engineering costs associated with application specific

integrated circuits [9][14].

2.1.3 Creation of FPGA Programs

Individually defining the many switch connections and cell logic functions would be

a daunting task. Fortunately, this task is handled by special software. The software

 5

translates a user's schematic diagrams or textual hardware description language code then

places and routes the translated design. Most of the software packages have hooks to allow

the user to influence implementation, placement and routing to obtain better performance

and utilization of the device. Libraries of more complex function macros (eg. adders)

further simplify the design process by providing common circuits that are already optimized

for speed or area [9][14].

2.2 Introduction of UP2 Education Kit

The University Program UP2 Education Kit was designed to meet the needs of

universities teaching digital logic design with state-of-the-art development tools and

programmable logic devices (PLDs). The package provides all of the necessary tools for

creating and implementing digital logic designs, including the following features:

■ Quartus® II Web-Edition development software

■ UP2 Education Board

– An EPF10K70 device in a 240-pin power quad flat pack (RQFP) package

– An EPM7128S device in an 84-pin plastic J-lead chip carrier (PLCC) package

■ ByteBlasterTM II parallel ports download cable

2.2.1 UP2 Education Board

The UP2 Education Board is a stand-alone experiment board based on a FLEX®

10K device and includes a MAX® 7000 device. When used with the Quartus II software,

the board provides a superior platform for learning digital logic design using industry-

standard development tools and PLDs.

 6

The board is designed to meet the needs of instructors and students in a laboratory

environment. The UP2 Education Board supports both look-up table (LUT) -based and

product term-based architectures. The EPF10K70 device can be configured in-system with

either the ByteBlaster II download cable or an EPC1 configuration device. Additional

download cables can be purchased separately. The EPM7128S device can be programmed

in-system with the ByteBlaster II download cable [2][3].

2.2.1.1 EPF10K70 Device

The EPF10K70 device is based on SRAM technology. It is available in a 240-pin

RQFP package and has 3,744 logic elements (LEs) and nine embedded array blocks (EABs).

Each LE consists of a four-input LUT, a programmable flipflop, and dedicated signal paths

for carry-and-cascade functions. Each EAB provides 2,048 bits of memory which can be

used to create RAM, ROM, or first-in first-out (FIFO) functions. EABs can also implement

logic functions, such as multipliers, microcontrollers, state machines, and digital signal

processing (DSP) functions. With 70,000 typical gates, the EPF10K70 device is ideal for

intermediate to advanced digital design courses, including computer architecture,

communications, and DSP applications [2][3].

2.2.1.2 EPM7128S Device

The EPM7128S device, a member of the high-density, high-performance MAX

7000S family, is based on erasable programmable read-only memory (EEPROM) elements.

The EPM7128S device features a socket mounted 84-pin plastic j-lead chip carrier (PLCC)

package and has 128 macro-cells. Each macro-cell has a programmable-AND/fixed-OR

array as well as a configurable register with independently-programmable clock, clock

enable, clear, and preset functions. With a capacity of 2,500 gates and a simple architecture,

 7

the EPM7128S device is ideal for introductory designs as well as larger combinatorial and

sequential logic functions [2][3].

2.2.1.3 ByteBlaster II Parallel Port Download Cable

Designs can be easily and quickly downloaded into the UP2 Education Board using

the ByteBlaster II download cable, which is a hardware interface to a standard parallel port.

This cable sends programming or configuration data between the Quartus II software and

the UP2 Education Board. Because design changes are downloaded directly to the devices

on the board, prototyping is easy and multiple design iterations can be accomplished in

quick succession [2][3].

2.2.2 UP2 Education Board Description

The UP2 Education Board, shown in Figure 2.0, contains the features described in

this section

Figure 2.0: UP2 Educational Board Block Diagram [3].

 8

2.2.2.1 DC_IN & RAW Power Input

The DC_IN power input accepts a 2.5-mm × 5.55-mm female connector. The

acceptable DC input is 7 to 9 V at a minimum of 350 mA. The RAW power input consists

of two holes for connecting an unregulated power source. The hole marked with a plus sign

(+) is the positive input; the hole marked with a minus sign (–) is board-common [2][3].

2.2.2.2 Oscillator

The UP2 Education Board contains a 25.175-MHz crystal oscillator. The output of

the oscillator drives a global clock input on the EPM7128S device (pin 83) and a global

clock input on the FLEX 10K device (pin 91) [2][3].

2.2.2.3 JTAG_IN Header

The 10-pin female plug on the ByteBlaster II download cable connects with the

JTAG_IN 10-pin male header on the UP2 Education Board. The board provides power and

ground to the ByteBlaster II download cable. Data is shifted into the devices via the TDI

pin and shifted out of the devices via the TDO pin. Table 1 identifies the JTAG_IN pin

names when the ByteBlaster II is operating in Joint Test Action Group (JTAG) mode [2][3].

 9

Table 2.0: JTAG_IN 10-Pin Header Pin-Outs [3].

2.2.2.4 Jumpers

The UP2 Education Board has four three-pin jumpers (TDI, TDO, DEVICE, and

BOARD) that set the JTAG configuration. The JTAG chain can be set for a variety of

configurations (i.e., to program only the EPM7128S device, to configure only the FLEX

10K device, to configure and program both devices, or to connect multiple UP2 Education

Boards together). Figure 2.1 shows the positions of the three connectors (C1, C2, and C3)

on each of the four jumpers. Table 2.1 defines the settings for each configuration [2][3].

Figure 2.1: Position of C1, C2 & C3 Connectors [3].

 10

Table 2.1: JTAG Jumper Settings [3].

Notes to Table 2.1:

(1) The first device in the JTAG chain is the FLEX 10K device, and the second device is

the EPM7128S device.

(2) The first device in the JTAG chain is the FLEX 10K device, and the second device is

the EPM7128S device. The last board in the chain must be set for a single board

configuration (i.e., for programming only the EPM7128S device, configuring only the

FLEX 10K device, or configuring/programming both devices). The last board cannot

be set for connecting multiple boards together. During configuration, the green

CONF_D LED will turn off and the green TCK LED will modulate to indicate that data

is transferring. After the device has successfully configured, the CONF_D LED will

illuminate [2][3].

2.2.2.5 EPM7128S Device

The UP2 Education Board provides the following resources for the EPM7128S

device.

■ Socket-mounted 84-pin PLCC package

■ Signal pins that are accessible via female headers

 11

■ JTAG chain connection for the ByteBlaster II cable

■ Two momentary push-button switches

■ Two octal dual inline package (DIP) switches

■ 16 LEDs

■ Dual-digit seven-segment display

■ On-board oscillator (25.175 MHz)

■ Expansion port with 42 I/O pins and the dedicated global CLR, OE1, and 2/GCLK2

pins

Pins from the EPM7128S device are not pre-assigned to switches and LEDs, but are instead

connected to female headers. With direct access to the pins, students can oncentrate on

design fundamentals and learn about the programmability of I/O pins and PLDs. After

successfully compiling and verifying a design with the Quartus II software, students can

easily connect the assigned I/O pins to the switches and LEDs using a common hook-up

wire. Students can then download their design into the device and compare their design’s

simulation to the actual hardware implementation [2][3].

2.2.2.6 EPM7128S Prototyping Headers

The EPM7128S prototyping headers are female headers that surround the device

and provide access to the device’s signal pins. The 21 pins on each side of the 84-pin PLCC

package connect to one of the 22-pin, dual-row 0.1-inch female headers. The pin numbers

for the EPM7128S device are printed on the UP2 Education Board (an “X” indicates an

unassigned pin). Table 2.2 lists the pin numbers for the four female headers: P1, P2, P3, and

P4. The power, ground, and JTAG signal pins are not accessible through these female

headers [2][3].

 12

Table 2.2: Pin umbers for Each Prototyping Header [3].

2.2.2.7 MAX_PB1 & MAX_PB2 Push-Buttons

MAX_PB1 and MAX_PB2 are two push-buttons that provide active-low signals

and are pulled-up through 10-KΩ resistors. Connections to these signals are easily made by

inserting one end of the hook-up wire into the push-button female header. The other end of

the hook-up wire should be inserted into the appropriate female header assigned to the I/O

pin of the EPM7128S device [2][3].

2.2.2.8 MAX_SW1 & MAX_SW2 Switches

MAX_SW1 and MAX_SW2 each contain eight switches that provide logic level

signals. These switches are pulled-up through 10-KΩ resistors. Connections to these signals

are made by inserting one end of the hookup wire into the female header aligned with the

appropriate switch. Insert the other end of the hook-up wire into the appropriate female

 13

header assigned to the I/O pin of the EPM7128S device. The switch output is set to logic 1

when the switch is open and set to logic 0 when the switch is closed [2][3].

2.2.2.9 FLEX10K Device

The UP2 Education Board provides the following resources for the FLEX 10K

device. The pins from the FLEX 10K device are pre-assigned to switches and LEDs on the

board [2][3].

■ JTAG chain connection for the ByteBlaster II cable

■ Socket for an EPC1 configuration device

■ Two momentary push button switches

■ One octal DIP switch

■ Dual-digit seven-segment display

■ On-board oscillator (25.175 MHz)

■ VGA port

■ Mouse port

■ Three expansion ports, each with 42 I/O pins and seven global pins

2.2.2.10 FLEX_PB1 & FLEX_PB2 Push Buttons

FLEX_PB1 and FLEX_PB2 are two push buttons that provide active-low signals to

two general-purpose I/O pins on the FLEX 10K device. FLEX_PB1 connects to pin 28, and

FLEX_PB2 connects to pin 29. Each push button is pulled-up through a 10-KΩ resistor

[2][3].

 14

2.2.2.11 FLEX_SW1 Switches

FLEX_SW1 contains eight switches that provide logic-level signals to eight

general-purpose I/O pins on the FLEX 10K device. An input pin is set to logic 1 when the

switch is open and set to logic 0 when the switch is closed. Table 2.3 lists the pin

assignment for each switch [2][3].

Table 2.3: FLEX_SW1 Pin Assignments [3].

2.2.2.12 FLEX_EXPAN_A, FLEX_EXPAN_B & FLEX_EXPAN_C

FLEX_EXPAN_A, FLEX_EXPAN_B, and FLEX_EXPAN_C are dual rows of 0.1-

inch spaced holes for accessing signal I/O pins and global signals on the FLEX 10K device,

power, and ground. Figure 6 shows the numbering convention for these holes [2][3].

 15

Figure 2.2: FLEX_EXPAN_A, FLEX_EXPAN_B & FLEX_EXPAN_C Numbering

Convention [3].

2.3 Introduction of Verilog HDL

Verilog HDL is a description language that can be used to model a digital system at

many levels of abstraction ranging from the algorithmic-level to the switch-level. The

complexity of the digital system being modeled could vary from that of a simple gate to a

complete electronic digital system, or anything in between. The digital system can be

described hierarchically and timing can be explicitly modeled within the same description.

The Verilog HDL language includes capabilities to describe the behavioral nature of

a design, the dataflow nature of a design, a design’s structural composition, delays and a

waveform generation mechanism including aspects of response monitoring and verification,

all modeled using one single language. In addition, the language provides a programming

language interface through which the internals of a design can be accessed during

simulation including the control of a simulation run.

The language not only defines the syntax but also defines very clear simulation

semantics for each language construct. Therefore, models written in this language can be

verified using a Verilog simulation. The language inherits many of its operator symbols and

constructs from the C programming language. Verilog HDL provide an extensive range of

 16

modeling capabilities, some of which are quite difficult to comprehend initially. However, a

core subset of the language is quite easy to learn and use. This is sufficient to model most

applications. The complete language, however, has sufficient capabilities to capture the

descriptions from the most complex chips to a complete electronic system

[4][10][11][12][13][15][16].

2.3.1 Major Capabilities

Listed below are the major capabilities of the Verilog hardware description

language:

o Primitive logic gates, such as and, or and nand, are built-in into the language.

o Flexibility of creating a user-defined primitive (UDP). Such a primitive could either

be a combinational logic primitive or a sequential logic primitive.

o Switch-level modeling primitive gates, such as pmos and nmos, are also built-in into

the language.

o Explicit language constructs are provided for specifying pin-to-pin delays, path

delays and timing checks of a design.

o A design can be modeled in three different styles or in a mixed style. These styles

are: behavioral style - modeled using procedural constructs; dataflow style –

modeled using continuous assignments; and structural style – modeled using gate

and module instantiations.

o There are two data types in Verilog HDL; the net data type and the register data type.

The net type represents a physical connection between structural element while a

register type represents an abstract data storage element.

o Hierarchical design can be described, up to any level, using the module instantiation

construct.

o A design can be of arbitrary size; the language does not impose a limit.

o Verilog HDL is non-proprietary and is an IEEE standard.

 17

o It is human and machine readable. Thus it can be used as an exchange language

between tools and designers.

o The capabilities of the Verilog HDL language can be further extended by using the

programming language interface (PLI) mechanism. PLI is a collection of routines

that allow foreign functions to access information within a Verilog module and

allows for designer interaction with the simulator.

o A design can be described in a wide range of levels, raging from switch-level, gate-

level, register-transfer-level (RTL) to algorithmic-level, including process and

queuing-level.

o A design can be modeled entirely at the switch-level using the built-in switch-level

primitives.

o The same single language can be used to generate stimulus for the design and for

specifying test constraints, such as specifying the values of inputs.

o Verilog HDL can be used to perform response monitoring of the design under test,

that values of a design under test can be monitored and displayed. These values can

also be complete with expected values, and in case of a mismatch, a report message

can be printed.

o At the behavioral-level, Verilog HDL can be used to describe a design not only at

the RTL-level, but also at the architectural-level and its algorithmic-level behavior.

o At the structure-level, gate and module instantiations can be used

[4][10][11][12][13][15][16].

2.4 Introduction to Quartus II

The Altera® Quartus® II design software provides a complete, multiplatform

design environment that easily adapts to user specific design needs. It is a comprehensive

environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software

includes solutions for all phases of FPGA and CPLD design (Figure 2.3).

 18

Figure 2.3: Quartus II Design Flow [1].

In addition, the Quartus II software allows all user use the Quartus II graphical user

interface and command-line interface for each phase of the design flow. User can use one of

these interfaces for the entire flow, or use different options at different phases [1].

2.4.1 Graphical User Interface Design Flow

Quartus II software can perform all stages of the design flow; it is a complete, easy-

to-use, stand-alone solution. Figure 2.4 shows the Quartus II graphical user interface as it

appears when you first start the software [1].

 19

Figure 2.4 Quartus II Graphical User Interface [1].

The Quartus II software includes a modular Compiler. The Compiler includes the

following modules (modules marked with an asterisk are optional during a full compilation,

depending on user settings):

■ Analysis & Synthesis

■ Partition Merge*

■ Fitter

■ Assembler*

■ Classic Timing Analyzer and TimeQuest Timing Analyzer*

■ Design Assistant*

■ EDA Netlist Writer*

■ HardCopy® Netlist Writer*

To run all Compiler modules as part of a full compilation, on the processing menu

click Start Compilation. User also can run each module individually by pointing to start of

the Processing menu then clicking the command for the module that user want to start. User

also can run some of the Compiler modules incrementally. In addition, to start the Compiler

 20

modules individually, click Compiler Tool on the Tools menu and run each module from

the Compiler Tool window (Figure 2.5). The Compiler Tool window also allows user to

open the settings file or report file for the module, or to open other related windows [1].

Figure 2.5: Compiler Tool Window [1].

The Quartus II software also provides predefined compilation flows that user can

use with commands from the Processing menu. Table 2.3 lists the commands for some of

the most common compilation flows [1].

Table 2.4: Commands for Common Compiler Flows [1].

 21

