FABRICATION OF SILICON NANOWIRES USING SCANNING ELECRON MICROSCOPE BASED ELECTRON BEAM LITHOGRAPHY METHOD

MOHAMMADNUZAIHAN BIN MD NOR

UNIVERSITI MALAYSIA PERLIS
MALAYSIA

U MAP

Fabrication of Silicon Nanowires Using Scanning Electron Microscope Based Electron Beam Lithography Method

MOHAMMAD NUZAIHAN BIN MD NOR
0430110011

A thesis submitted In fulfillment of the requirements for the degree of Master of Science (Microelectronic Engineering)

School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS MALAYSIA

GRADUATE SCHOOL

UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of a post graduate degree from Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in their absence, by Dean of the Graduate School. H is understood that any copying or publication or use of this thesis or parts thereff for financial gain shall not be allowed without my written permission. It is also tonderstood that due recognition shall be given to me and to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis.

Requests for permission to eopy or make other use of material in whole or in part of this thesis to be addressed to:

Dean of Graduate School
Universiti Malaysia Perlis
Jalan Bukit Lagi
01000 Kangar
Perlis Indera Kayangan
Malaysia

APPROVAL AND DECLARATION SHEET

This thesis titled Fabrication of Silicon Nanowires Using Scanning Eleeron Microscope Based Electron Beam Lithography Method was prepared and submitted by Mohammad Nuzaihan Bin Md Nor (Matrix Number: 0430110011) and has been found satisfactory in terms of scope, quality and presentation as partial fulfilment of the requirement for the award of degree of Master of Science (Microelectronic Engineering) in Universiti Malaysia Perlis (UniMAP).

(Associate Professor Dr Uda Bin Hashim)

School of Microelectronic Engineering

Universiti Malaysia Perlis
(Date : \qquad

School of Microelectronic Engineering
Universiti Malaysia Perlis

DEDICATION

Al- Fatihah to my mum, Allahyarhammah Jamiah Binti Hashim, nay Ahan' S.W.T bless you. Special dedication to my dad, Md Nor Bin Awang and \boldsymbol{m}) siblings, thanks for all the support and understanding. May Allah S.W.Tbless'all of us, Amin.

Thank you!

ACKNOWLEDGEMENT

First of all my deepest thanks and humble supplication are due to Almighty Allah (SWT), the Omnipotent, the Merciful, the Compassionate, always help, support and strengthened me during my lifetime. I beg Him to continue His blessings on me forever. Alhamdulillah, finally I have fulfilled my thesis in this year, 2007. The journey towards the completion of this thesis was full of unexperted challenges and it is almost impossible to complete this thesis single-handedly without the help and support of others. I would like to give my heartfelt thanks to everyone who has provided me with such support.

1 would like to acknowledge and express the greatest gratitude to my supervisor Assoc. Prof. Dr. Uda Haslim, not only for giving me the opportunity to work in his group but also for his eneouragement, supervision and guiding me throughout this whole research work. His invaluable knowledge and suggestion had develop and grown up my experience and my skills in this nanotechnology. It has been great experience in the IRPA Single Electron Transistor (SET) Group. I wish to express my gratitude for the benefits that I have gained from conversations with the other member in this group.

Many colleagues have worked closely with me on this research work. First, I would like to thank Miss S Niza for helping me to start at the lab. I am lucky to have Miss Nurhamidah, Miss Amiza and Miss Nik Hazura in pursuing the functional SEM, EBL system, AFM and Modu Lab Equipments. I do appreciate the constant help from lab technicians who always understand and their great help during the process of completing this research work. I also want to thank Mr Mohd Hafiz, Mr Mohd Sukri and Miss Suraya for helping me a lot to improve the written English.

A special thank to all staff members of the School of Microelectronic Engineering, Universiti Malaysia Perlis such as Mrs. Hasnizah, Miss Sanna, Mrs. Aznira, Mr. Khairuddin, Miss Nurjuliana and Mr. Razaidi for their technical advice and contributions either directly or indirectly. I'm also very grateful to Universiti Malaysia Perlis and the IRPA Single - Electron Transistor (SET) for their financial support, throughout my postgraduate study. These special thanks also go to Miss Sharifah घuspa and Miss Norzaililah for their support in managing the postgraduate and scholarship program.

Last but no least, I would like to thank my father, sisters and brothers for their love, confidence and support throughout my study. Not/to Corgot my housemate Mr. Amir who has always given encouragement and advise daring my thesis preparation. To my friends whose names are not included here, may ALLAH bless you all.

Thanks to Almighty ALLAH.

MOHAMMAD NUZAIHAN BA MD NOR
UNIVERSITI MALAYSIAPERLIS
m.nuzaihan@unimap.edatmy

FABRIKASI "SILICON NANOWIRES" MENGGUNAKAN KAEDAH MIKROSKOP IMBASAN ELEKTRON BERDASARKAN LITHOGRAFI ALUR

ELEKTRON

'Nanowires' merupakan kelas baru dalant bahan yang telah menarik perhatian dan menjadi tumpuan penyelidikan sejak akhir-akhir ini kerana penggunaannya berpotensi di dalam nanoteknologi < seperti kejuruteraan 'nanoelectronic', 'nanomechanical', 'biomedical'. Fabrikasi Nanowires' merupakan sesuatu yang sangat mencabar pada hari ini. Kaedah konvesional lithografi tidak mampu lagi untuk menghasilkan 'Nanowires' dan wataupun dengan menggunakan lithografi nano yang maju adalah bukan mudah unterk mencapai ukuran yang kurang daripada 100 nm . Tujuan kerja penyelidikan in'̃ adafah untuk membentuk dan menghasilkan 'Nanowires' terkecil menggunakan kaedah labrikasi nano 'Top-Down' yang melibatkan Mikroskop Imbasan Elektron berdasarkan Lithografi Alur Elektron. Kaedah fabrikasi nano 'TopDown' berdasarkan Eithegrafi Alur Elektron dimulakan dengan menghasilkan Rekaan Corak 'Nanowires (APPD). Rekaan Corak 'Nanowires' direka menggunakan perisian yang dipangg(RAITH ELPHY Quantum GDSII Editor:. Pakej perisian ini menawarkan semua ciri-ciri yang diperlukan untuk menghasilkan struktur mikro dan nano bermula dengan reka struktur, proses selanjutnya dan kerja-kerja modifikasi. Rekaan Corak 'Nanowires' ini direka dalam pelbagai skala daripada 100 nm dikecilkan sehngga 20 nm . Seterusnya, pembangunan proses aliran fabrikasi nano yang mengandungi parameter-parameter yang terperinci dan resepi-resepi telah dibangunkan uatuk pembentukkan Nanowires'. Dua (2) jenis topeng kerintangan dan tiga (3) jenis 'Nanowires' yang terlibat dalam pembangunan proses aliran ini. Topeng kerintangan terdiri daripada Topeng Kerintangan PMMA dan Topeng Kerintangan Siri ma- N2400. Ianya digunakan sebagai bahan topeng atau topeng punaran semasa proses memunarkan lapisan oxida. Fabrikasi 'Nanowires' merupakan fokus utama dalam kerja penyelidikan ini yang terdiri daripada ' SiO_{2}, ' Si ', 'a-Si Nanowires'. ' SiO_{2} Nanowires' berfungsi sebagai penebat dan topeng keras untuk punaran silica dalam usaha membentuk 'Si Nanowires'. 'Si Nanowires' dan 'a-Si Nanowires' adalah sangat meluas digunakan sebagai 'Nanowires' semikonduktor dan mempunyai nilai potensi dalam peranti 'nanoelectronic'. Dalam usaha menghasilkan 'Nanowires' terkecil ini, dimensi, profil pembentukkan, profil punaran dan pengecilan saiz melalui pengoksidaan secara pemanasan telah diselidik. Akhir sekali, penggabungan kaedah fabrikasi nano 'TopDown' dengan pengecilan saiz telah menghasilkan kejayaan pengecilan 'Si Nanowires' daripada 100 nm hinggalah menghampiri 20 nm .

FABRICATION OF SILICON NANOWIRES USING SCANNING ELECTRON MICROSCOPE BASED ELECTRON BEAM LITHOGRAPHY METHOD

Nanowires is a new class of materials that have attracted attention and great research interest in the last few years because of fleir potential applications in nanotechnology such as nanoelectronic，nanomechanical and biomedical engineering． Fabrication of Nanowires is one of the great challenges today．Conventional lithography methods are not capable to produce Nanowires and even with advance nanolithography sizes below 100 nm may not easily be achieved．The goal of this research work is to form and prodive very small nanowires using a Top－Down Nanofabrication Method which inydued Scanning Electron Microscope（SEM）based Electron Beam Lithography（EBL）method．Initially，the Top－Down Nanofabrication Method based on EBL was the design of the Nanowires Pattern Design（NPD）．The NPD has been done by（⿴囗十ftrare called RAITH ELPHY Quantum GDSII Editor．The software package provides all the features needed to produce micro and nano scale structures starting from a structure design，post processing and design modification． The NPD is designed in various nanowires scale size from 100 nm down to 20 nm ．Next， the nanofabrication process flow development which consists of the detailed parameters and recipes aye developed for nanowires formation．Two（2）types of resist masks and three（3）Dppes of nanowires are involved in the process flow development．The Resist Masks consist of PMMA Resist Mask and ma－N 2400 Series Resist Mask．It is used as a prask naterial or etches mask during Silicon Dioxide etching process．Fabrication of Natowires is the main focus in this research work which consists of $\mathrm{SiO}_{2}, \mathrm{Si}, a-\mathrm{Si}$ Nanowires． SiO_{2} Nanowires is used as insulation and hard mask for silicon etching in order to form Si Nanowires．Si Nanowires and a－Si Nanowires are widely used as semiconducting nanowires and has great potential in nanoelectronic devices．In order to produce very small nanowires，the dimensions，developments，etch profiles of nanowires and size－reduction by thermal oxidation was investigated．Finally，the combination on Top－Down Nanofabrication Method and size－reduction has resulted in successful reduction of Si Nanowires reduced from 100 nm to approximately 20 nm ．

TABLE OF CONTENTS

CHAPTER

TITLE
PAGES
PERMISSION TO USE i
APPROVAL AND DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRAK vi
ABSTRACT viii
TABLE OF CÓNTENTS ix
LISTOFTABLES xiii
KIST OF FIGURES xiv
GLOSSARY OF ABBREAVATION xix
LIST OF APPENDIXES xxi
LIST OF PUBLICATIONS xxii
LIST OF AWARDS xxv
INTRODUCTION
1.1 Overview of Nanotechnology 1
1.2 Problem Statement 4
1.3 Research Objective 6
1.4 Research Scopes 6
1.5 Organization of this research work 7
2.1 Introduction 8
2.2 Nanowires 10
2.3 Materials of Nanowires
2.3.1 Insulator
2.3.2 SemiconductorN.
2.4 Properties of Nanowires41214
2.5 Existing Fabrication of Nanowires 15
2.5.1 Vapor-Liquid-Solid Method 15
2.5.2 Template-Based Method 17
2.5.3 Vapor Phase Meyhod 18
2.5.4 Solvothermal Method 19
2.5.5 Oxide Assisted Growth Method 20
2.5.6 E-Beam Lithography Method 21
2.6 Application of Nanowires 24
3.0
TQP-DOWN NANOFABRICATION
METHOD
3.1 Introduction 27
3.2 Sample Preparation 29
3.2.1 Starting Material 29
3.2.2 Wafer Cleaning Process 30
3.2.3 Oxidation Process 32
3.2.4 Deposition Process 33
3.2.5 E-beam Resist Spin Coating 34
3.2.6 E-Beam Resist Thickness Measurement 38
3.2.7 PMMA Resist Thickness 39
3.2.8 ma-N 2400 Series Resist Thickness 40
3.3 Software Description and Pattern Design 41
3.3.1 ELPHY Quantum GDSII Editor 42
3.3.2 Pattern Design 44
3.4 Electron Beam Lithography (EBL) System 45
3.4.1 Direct Writing EBL Approach 46
3.4.2 Beam Current and Focusing 47
3.4.3 Coordinate Systems 49
3.4.4 EBL Exposure
3.5 Development Process
3.5.1 Developer49
6353
3.6 Inductively Coupled Plasma - 54
Reactive Ion Etching (ICP-RIE)
3.7 High Power Microscope (HPM) Inspection 54
3.8 Scanning Electron Microscope (SEM) laaging 55
3.9 Atomic Force Microscopy (AFM) Characterization 56
3.10 Chapter Summary 57
4.0
RESIST MASKSAND NANOWIRESFORMATIOX
4.1 Introduction 58
4.2 The Process Flow Development 58
A.3 Resist Masks Formation 59
4.3.1 Process Flow of the Resist Masks 59
4.3.2 Results and Discussion 64
4.4 Nanowires Formation 78
4.4.1 Process Flow of the SiO_{2} Nanowires 79
4.4.2 Results and Discussion 80
4.4.3 Process Flow of the Si Nanowires 84
4.4.4 Results and Discussion 85
4.4.5 Amorphous Silicon (a-Si) Nanowires Formation 90
4.4.6 Results and Discussion 92
4.5 Chapter Summary 93
5.1 Introduction
95
5.2 Conclusion 95
5.3 Recommendations

REFERENCES

APPENDICES

LIST OF TABLES

TABLES

TITLE

Table 1.1
Table 2.1
Table 2.2:
Table 3.1:
Table 3.2:
Table 4.1:

Table 4.2:
Table 4.3:
Table 5.1:

Past and Future Technology Nodes for Ceature CD4

The properties of Si and SiO_{2}14
The successful works on EBL Method 21
The silicon wafer specifications 29
The suitable exposerec parameters 51
The Resist Masks and Nanowires involved 59
in the process:low developmentThe develop troubleshooting problems74
The smallest CD of Nanowires 94
The achievements of this research work 97

LIST OF FIGURES

FIGURES

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 2.1

Figure 2.2 TITLE

The growth of U.S. government funding for nanotechnology
One nanometer is approximately the length to 5 silicon atoms aligned in a line
Schematic representations of the top-down and bottom-up approach and their relationship to biologiealand structures
The development of the feature size of IC,

The unique geometry of nanowires10

Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
The atomic structures of Silicon Dioxide11
The covalent bonding of pure Si 12
The atomic order of crystal structure 13
The amorphous atomic structure 13
The schematic diagram of VLS for nanowires growth 16
The GaN Nanowires by VLS method 16
Figure 2.10 The ZnO Nanowires by VLS method 16
Figure 2.11 The alumina templates on the silicon wafer 17
Figure 2.12 The production of nanowires by vapor phase method 18

Figure 2.13

Figure 2.14
Figure 2.15

Figure 2.16
Figure 2.17
Figure 2.18

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8

Figure 3.9
Figure 3.10
Figure 3.1 C
Figure 3.12
Figure 3.13

Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17

Figure 3.18
Figure 3.19
Figure 3.20

The TEM image of the sample prepared in the solvothermal method The schematic diagram of OAG20
The SEM image of sub- 100 nm single layerpatterns produced on Si substrate by EBL methodThe nanowires MOSFET

The connections between nano and micro structures
The schematic diagram (top) and SEM image of 26 Si SET (bottom)
The Top-Down Nanofabrication Method28
P-type silicon wafer 30
The Wet Cleaning Bench 30
The RCA and BOE solution 31
The Modu-Lab Oxidation Furnace Module 33
The Plasmalab 80 Plus PECVD 33
The PMMA (left) and ma- N2403 (right) 35
Schematie of the chemical reaction of a 36positive resist (top) and negative resist (bottom)used in EBL
Positive and negative resist transfer process 36
Steps for resist coating process 37
The WS-400B-GNPP/UTE Spinner 38
The Filmetrics F-20 Spectrometer 39
Overview of graphic user interface (GUI) 42
RAITH ELPHY Quantum GDSII EditorThe Nanowires Pattern Design (NPD)44
The Nanowires Pattern Design with dimensions 45
The EBL System 46
The comparison of scanning methodologies: 47
raster scan and vector scan
The schematic of an electron-beam exposure system 47
The beam current measurement window 48
SEM images shows (a) The contamination dot 48

Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 3.27
Figure 3.28
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13
dot at $70 \mathrm{~K} X$ magnification
The coordinate system by on the sample 49
The exposure window 50
The exposure parameter calculation 50
Block diagram of optimized exposure parameters
The SAMCO ICP-RIE 10iP
The Olympus BX51M HPM
The JOEL JSM 6460LA SEM
The SPA 400 AFM57

The process flow of Resist Masks 59
The p-type $<100\rangle$ silicon wafer after cleaning process 60
Growth of $200 \mathrm{~nm} \mathrm{SiO}{ }_{2}$ layer $\quad 60$
The PMMA resist coating on the SiO_{2} layer 61
The ma- N 2403 resist coating on the SiO_{2} layer 61
Soft bake of PMMA resist coated sample 62
Soft bake of ma-N2400 resist coated sample 62
The coated sample is exposed using EBL exposure 63
The frathemaining resist for both Resist Mask 64
HRM images of the PMMA Resist Mask shows 65
(a) the whole of the NPD with DF, (b) BF at 625 X ,
(c) row 1 and (d) row 4 of the NPD
at 27000 X magnification, respectively
HPM images of the ma-N2403 Resist Mask shows
(a) the whole of the NPD with DF image,
(b) BF image at 625 X , (c) row 2 and
(d) row 3 of the NPD at 2700 X magnification, respectively

HPM images of resist profile shows
(a) incomplete development,
(b) under development, (c) over development and
(d) surface contaminants

The SEM images of the PMMA Resist Mask
shows the (a) (b) row 1 , (c) (d) row 2, (e)
(f) row 3 at 5 K and 15 K , (g) row 4 of the NPD at 5 K
and (h) 30 K and (i) 50 K X magnification, respectively

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20
Figure 4215
Figure 4.22
Figare 4.23

Figure 4.24

Figure 4.25

Figure 4.26

Figure 4.27
Figure 4.28

The SEM images of the ma-N 2403 Resist Mask
shows the (a) (b) row 1, (c) (d) row 2, (e)
(f) row 3 at 5 K and 15 K , (g) row 4 of the NPD at 5 K and (h) 30 K magnification and
(i) 50 K X magnification, respectively

The SEM image of the Nano-Songket structure of the ma-N 2403 Resist Maks
The SEM images show the resist profile problems
(a) Residue resist on the developed sample,
(b) Incomplete development and
(c) Underdevelopment and Overdevelopment

The AFM images show (a) surface topography,
(b) 3-D and (c) profile measurement of PMMA Resist Mask
The AFM images shelv (a) surface topography,76
(b) 3-D and (c) profile measurement of ma-N2403 Resíst Mask
The AFMimages show (a) surface topography,77
(b) 3-D and (c) profile measurement of
ma- N 2403 Resist Mask after rework
The process flow of Nanowires78
The etching process of SiO_{2} 79
The SiO_{2} Nanowires 80

The SEM images of the 70 nm SiO 2 Nanowires at 80
(a) 5 KX and (b) 15 K X magnification

The SEM images of the 70 nm SiO 2 Nanowires at81
(a) 30 KX and (b) 50 K X magnification

The AFM images show (a) surface topography,
(b) 3-D and (c) profile measurement of the SiO_{2} Nanowires

The AFM images show (a) surface topography,
(b) 3-D and (c) profile measurement of the SiO_{2} Nanowires after the etch improving by BOE The etching process of Si84

The Si Nanowires 8585

Figure 4.29

Figure 4.30

Figure 4.31

Figure 4.32

Figure 4.33

Figure 4.34

Figure 4.35
Figure 4.36
Figure 4.37
Figure 4.38
Figure 4.39

Figure 4.40

Figure 5.1 T , The schematic of EBL lift-off process99
(a) EBL in the PMMA, (b) exposed PMMA is developing,
(c) metal deposition and (d) liftoff of metal on unexposed

PMMA by removing PMMA underneath
The SEM images of 4 point
Si Nanowires resistivity measurement structure
The schematic diagram of Si-SET

GLOSSARY OF ABBREVIATION

SET	Single Electron Transistor
EBL	Electron Beam Lithography
AFM	Atomic Force Microscopy
SPM	Scanning Probe Microscopy
SEM	Scanning Electron Micrascopy
STM	Scanning TunnelingMicroscopy
CD	Critical Dimension
IC	Integrated Gircuit
PMMA	Polymethil Methacrylate
SiO_{2}	SiliconDioxide
Si	Silicon
a-Si	Amorphous Silicon
VLS	Vapor-Liquid-Solid
OAG	Oxide Assisted Growth
GaN	Gallium Nitride
0	Zinc Oxide
YEM	Transmission Electron Microscopy
FET	Field-Effect Transistor
CMOS	Complementary Metal Oxide Semiconductor
DNA	Deoxyribonucleic Acid
ICP-RIE	Inductively Coupled Plasma- Reactive Ion Etching
HPM	High Power Microscopy
SC	Standard Cleaning
BOE	Buffered Oxide Etch
WCM	Wet Cleaning Module
OFM	Oxidation Furnace Module
PECVD	Plasma Enhanced Chemical Vapor Deposition

PAC	$=$ photoactive Compound
MV	$=$ Molecular Weight
CAD	$=$ Computer Aided Design
GUI	$=$ orphic User Interface
NPD	$=$ Working Area
WA	$=$ Single Pixel Line
CPL	$=$ Methyl IsoBethyl Ketone
MIBK	$=$ Depropanol
IPA	$=$ Darkfield
DI	$=$ Brightfield
DF	

LIST OF APPENDIXS

APPENDIX

Publications110

B Colloquiums113

C
D
Awards114

Posters115

E

Newspaper Cutting 116

F
The Various Results of117

The Resist Masks and
Nanowires Formation
(From $1 \mu \mathrm{M}$ Down To 30 nm Widths)
During Optimization
Exposure Parameters Steps

LIST OF PUBLICATIONS

1. Mohammad Nuzaihan Md Nor, S Niza Mohammad Bajun Uda Hashim. Pattern Design for Nanowire Formation Using Raith Elphy Quăntum GDSII Editor. Proceeding of Annual Fundamental Science Scminar 2005, AFSS 2005. P. 110-116. ISBN 983-43098-0-5.
2. Mohammad Nuzaihan Md Nor, S Niza Mohammad Bajuri, Nur Hamidah Abdul Halim, Uda Hashim. Positive Pattern Scheme and Negative Pattern Scheme For Nanowire Formation ising Scanning Electron Microscope Based Electron Beam Lithography Technique, Journal Solid State Science \& Technology Letters. Volanre 12, RCSST 2005. P. 62. ISSN 0128-8393.
3. Mohammad Nuzaihan Md Nor, U.Hashim, N.H.A. Halim, S.N. M. Bajuri. Nanowire formation for Single Electron Transistor using SEM Based Electron Beam Lithography (EBL) Technique: Positive Tone Vs Negative Tone E-beam Besists Technical Proceeding of NSTI Nanotech 2006, HCC Boston USA, NSTI 2006. P. 266-269. ISBN 0-9767985-8-1 Vol.3.
4. Mohammad Nuzaihan Md Nor, U.Hashim, N.H.A. Halim. Nanowires. Extended abstract of One-Day Seminar on Nanotechnology, Nanomig 2006, USM. P 67-70.
5. Mohammad Nuzaihan Md Nor, Nur Hamidah Abdul Halim, Uda Hashim, Hasnizah Aris, Sanna Taking, Zaliman Sauli , KC Phang "KUKUM Nano Fabrication Cleanroom: Efforts Towards Nanotechnology", Seminar Penyelidikan Kejuruteraan KUKUM 2006.
6. Mohammad Nuzaihan Md Nor, U.Hashim, Armiza Rasmi, N.H.A. Halim. Nanowire Formation Using SEM Based Electron Beam Lithography (EBL) Technique: Developments Profile of Negative Tone E-Beam Resist. The Second International Conference on Solid State Science and Technology 2006, ICSSST 2006 KUSTEM. P 282-284. ISSN 0128-839.
7. Mohammad Nuzaihan Md Nor, Uda Hashim, Nur Nazihah Halemi, Nur Hamidah Abdul Halim. Nanostructure Formation Using Seanning Electron Microscope (SEM) Based E-Beam Lithography (EBL) Techarique: Wet Etch Profile. $15^{\text {th }}$ Scientific Conference of Electron Microscopy Society of Malaysia, EMSM 2006 KUSTEM, P 43-44.
8. Mohammad Nuzaihan Md Nor, Uda Hashim, Qhar Hamidah Abdul Halim. Top Down Approach: Fabrication of SManowires Using Scanning Electron Microscope (SEM) Based E-Beam Lithography (EBL) Technique and Inductively Coupled Plasma-Reactive Ion Etching. Submitted and accepted for International Conference on Advancement of Materials and Nanotechnology 2007, ICAMN 2007 SIRLM \& UITM.
9. S Niza Mohamnad Bajuri, Nur Hamidah Abdul Halim, Mohammad Nuzaihan Md Nor and Uda Hashim. PMMA Characterization and Optimization for Nano Structyre Pormation. Proceeding of $1^{\text {st }}$ national Conference on Electronic design (NCED) 2005. P 81-83. ISBN 983-42724-0-5
10. Armiza Rasmi, Mohammad Nuzaihan Md Nor, Uda Hashim. SOI Single Electron Transistors (SET) Set Design and Process Development. $1^{\text {3t }}$ National Conference on Electronic Design 2005, NCED2005, P 85-90. ISBN 983-42724-0-5.
11. S Niza Mohammad Bajuri, Nur Hamidah Abdul Halim, Mohammad Nuzaihan Md Nor and Uda Hashim. 495K \& 950K PMMA Thickness Characterizations and Optimization. Proceeding of Annual Fundamental Science Seminar 2005, AFSS 2005. P. 140-144. ISBN 983-43098-0-5.
