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abstract
This paper reviews the use of split sample approach to test the ability of stochastic daily rainfall generation model to generate 
rainfall data for the future.  The catchment adopted is Kangaroo Valley in New South Wales, Australia.  Total data of 101 years 
long are divided into two sets: Earlier Period (80 years) and Later Period (the subsequent 21 years).  The model adopted is 
the 8x8 Transition Probability Matrices Model, using two variations the Shifted Exponential Distribution and Box-Cox Power 
Transformation for the eighth class.  Model parameters including transition probability matrices, exponential distribution 
parameters and Box-Cox Power Distribution parameters were computed using the data from the Earlier Period.  The comparisons 
of statistical measures were made against the Later Period.  Comparisons were made using daily statistical measures, daily 
extremes, monthly statistical measures, monthly extremes, annual statistical measures, annual extremes and serial correlation 
coefficients.  The results shown that in general satisfactory statistical comparisons were made between the generated data based 
on Earlier Period against the statistics of the Later Period.  In conclusion, the stochastic daily rainfall generation model can be 
used to generate synthetic data for planning and forecasting.
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1. INTRODUCTION
Hydrological forecasting generally required long-term data 

[1]. Unfortunately, in some cases recorded data of sufficiently 
long duration is not available. One of the methods to overcome 
this problem of short duration is to use stochastic data generation.  
To use the method of stochastic data generation, analysis of the 
hydrologic time series needs to be conducted. The hydrologic 
time series consists of two contributing factors: random factors 
and persistence (stochastically deterministic factor).  Stochastic 
modelling used the stochastic properties of observed time series 
to generate synthetic long-term time series. The statistical and 
stochastic properties of the observed time series are assumed to 
represent the population properties, and the synthetic long-term 
time series are assumed to come from the same population [2].  

Rainfall is regarded as the most basic weather variable, 
independent of temperature and evaporation [3]. Thus, generation 
of long-term synthetic rainfall data can provide basic set of weather 
variable for long term forecasting [4]. Rainfall is the key input 
variable which activates flow and mass transport in hydrological 
system for simulating and forecasting rainfall in space and time can 
play an important role in enhancing understanding of hydrological 
system response, and in the design and operation of water resource. 
Long term historical records of hydrological information such as 
rainfall and runoff data form the basis of planning and design of 
major water resources projects [5] Detailed knowledge of rainfall 
characteristics in ones catchments is essential for improvement in 
planning and design of drainage networks.  

There are many studies conducted in generating stochastic 
daily rainfall data [6]. However, most of the statistical comparisons 
were made against the data used to compute the model parameters.  
Thus, those comparisons evaluated the ability of the model to re-

produce the stochastic properties of the daily rainfall time series by 
assuming that both the recorded and generated rainfall are samples 
from the rainfall data population time series.  

In this study however, a split sample approach will be utilised 
to test the ability of stochastic daily rainfall data generation model 
to generate data for the future. The significance of the findings of 
this study would be to support the use of stochastic modelling, 
which in turn can be very useful in cases of scarcity of data. 
Stochastic modelling can generate synthetic data for planning and 
forecasting purposes.  

2. CATCHMENT DESCRIPTION 
The catchment selected for this study is Kangaroo Valley, which 
is located about 150km south of Sydney, and about 50km west of 
the east coast of New South Wales, Australia. The map is shown 
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CHARACTERISTICS MEASURES
National Index 215220

Area 330 km2 

Stream Length 34.5 km

Average Slope 1.35%

Annual Rainfall 1637.0 mm

Annual Runoff 934.2 mm

Annual Pan Evaporation 1773.4 mm

Climate Temperate

Vegetation Rainforest, Hedgeland, 
Sedgeland, Grassland

Table 1: Catchment characteristics [7] 
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in Figure 1 and catchment characteristics are shown in Table 1.  
Data from 1890 to 1990 will be used in this study, from 1890 to 
1969 (80 years) for the Earlier Period and from 1970 to 1990 (the 
subsequent 21 years) for the Later Period.  

3. TRANSITION PROBABILITY MATRICES 
MODEL 

Haan et al. [8] used a multi-state Markov chain approach to 
model the distribution of rainfall.  They used seven states to describe 
rainfall behaviour based on rainfall depths. The first state is dry (no 
rain) and six others are wet (with rainfall). Uniform distributions 
were assumed for states 2 to 6, and a shifted exponential distribution 
for the seventh state (unbounded).  

Haan et al. [8] mentioned that persistence and periodicities could 
be observed in daily weather patterns. The persistence is modelled 
by a Markov chain.  

Consider the following [8]: 

P(Enj|En-1jn-1,…, E1j1) = P(Enj|En-1jn-1)	                                               (1)

where for x1, x2, … as the observations of daily rainfall, then Ei,j  
(i = 1, 2,…c, and j = 0, 1,…, c), where c is the number of classes or 
states, and if P(Enj|En-1j) does not depend on n, then these transition 
probabilities (denoted Pij), and the Markov chain is stationary.  The 
Transition Probability Matrices (TPM) is the collection of Pij between 
classes in (c + 1) x (c + 1) matrices.  

Periodicities mean that the weather pattern undergoes a cyclical 
behaviour within a year. Within a season, the weather pattern can be 
assumed to be stationary. Therefore, the TPM can be assumed to be 
stationary within each season: 

(Pij(k))(i, j = 0, 1,…, c and k = 1,…, s)	                               (2)

where k denotes the kth season and s is the total number of seasons.  

The probability distributions had to be fitted to each class. It was 
assumed that the same set of distributions would model each season.  
Therefore, (c + 1) cumulative distribution functions are used: 

Fm(x) (m = 0,…, c)	  		                               (3)

where Fm (x) = P (rainfall < x | rainfall belongs to class m). 

A uniform distribution was assumed for all wet states, except for 
the last one. For the highest class, a shifted exponential distribution 
was found to be the most suitable [8]: 

Flast(x) = e(x − ncl)/η 			                                                (4)

where ncl is the lower boundary of the last 
class and η is a constant found by maximum 
likelihood: 

η =  x  – ncl 		                                (5)

where  x  is the mean daily rainfall greater 
than ncl.  

Haan et al. [8] adopted the months to be 
the seasons. Seasons follow an annual cycle, 
and by using months to represent seasons, 
the cyclical pattern can be satisfactorily 
represented. Hence, the TPM can be assumed 
to be stationary within a month. They also 

adopted 7 classes of daily rainfall states after testing up to 12 classes. 
These values were found to be satisfactory for the Kentucky basin. 
Therefore, twelve sets of (7x7) matrices needed to be found from the 
recorded data.  

Baki [13] tested six variations of the TPM model: 6x6 TPM 
(called SE6), 7x7 TPM (called SE7) and 8x8 TPM (called SE8), all 
three with shifted exponential distribution for the last class and linear 
distribution for the other classes, and 6x6 TPM (called BC6), 7x7 
TPM (called BC7) and 8x8 TPM (called BC8), all three with Box-
Cox Power transformation for the last class and linear distribution 
for the other classes. The last (highest) class has closed lower bound 
and open higher bound. The class boundaries are shown in Table 2.  

Srikanthan and McMahon [9] developed a modified TPM model 
based on the TPM Model of Haan et al. [8]. The exception was 
that the daily rainfall data is transformed using the Box-Cox Power 
Transformation [10] instead of a shifted exponential distribution 
for the last class. Srikanthan and McMahon [11] used TPM Model 
in their development of automatic evaluation of stochastically 
generated rainfall data. Srikhathan et al. [12] also used TPM 
Model in their comparison of daily rainfall data generation models.  
Baki [13] found that in general, all six variations used (three sets 
of matrices using Shifted Exponential and three sets of matrices 
using Box-Cox power transformation) were equally satisfactory 
as the differences between the six variations are minimal.  This 
was consistent with past research as Haan et al. [8] found that the 
number of classes did not affect the accuracy of the TPM Model to 
a great extent.  Therefore, the selection between the six variations is 
not very critical.  In overall considerations, the transition probability 
matrices model (TPM) is proven to be satisfactory. Thus, this 
study adopted two variations of the TPM Model, namely the 8x8 
TPM with Shifted Exponential Distribution and Box-Cox Power 
Transformation (referred to as SE8 and BC8, respectively). 

Figure 1: Catchment

CLASS LOWER LIMIT 
(mm)

UPPER LIMIT (mm)
6x6           7x7            8x8

1 0.0     0.0            0.0             0.0

2 0.1     0.9            0.9             0.9

3 1.0     2.9            2.9             2.9

4 3.0     6.9            6.9             6.9

5 7.0    14.9          14.9           14.9

6 15.0                      30.9          30.9

7 31.0 (for 7x7 & 8x8)    N/A                            62.9

8 63.0 (for 8x8)    N/A           N/A

Table 2: Class boundaries for TPM model [8]
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4. METHODOLOGY OF THE SPLIT SAMPLE 
APPROACH 

The split sample approach used in this study is to utilise data 
from the Earlier Period to compute the model parameters and then 
used these parameters to generate data for the Later Period. Figure 2 
shows the data split into two periods: the Earlier Period (EAP) and 
the Later Period (LPR). Initially, data from the Earlier Period (80 
years) was used to compute the 8x8 transition probability matrices 
using maximum likelihood method. The parameters of the shifted 
exponential distribution and Box-Cox Power Transformation were 

also computed using class 8 data from the Earlier Period.  Daily 
rainfall data generation were carried for the Later Period using 
those parameters based on the Earlier Period. Ten replicates of 
synthetic daily rainfall data, each with the length equals to the 
Later Period (21 years). Statistical comparisons will then be made 
between the generated data to those of the Later Period.  

The Split Sample approach tested the ability of rainfall data 
generation models to generate data for the future (since the Later 
Period succeeds the Earlier Period). The comparison was made 
between the statistics of the two independent samples (generated 
data using parameters from EAP and the recorded data from LPR).  
Figure 3 shows the flowchart of the split sample approach.   

5. RESULTS
Stochastic rainfall data generation model 8x8 TPM with 

shifted exponential distribution (SE8) and Box-Cox Power 
Transformation (BC8) used parameters developed in the Earlier 
Period to generated data for the Later Period.  The recorded data 
from both Earlier Period (EAP) and Later Period (LPR) were also 
presented together with the results of the two variations of TPM 
model. Slight variations were observed between EAP and LPR 
due to sampling errors.  

Ten replicates of data were generated for each TPM model 
variation, each with the length equal to LPR (21 years), even 
though the parameters were developed from EAP (80 years).  
The initial state of rainfall used was 1. Tables 2 to 6 show the 
comparison between the average of ten replicates of generated 
data of both variations of TPM model (SE8 and BC8) and statistics 
of the recorded data (EAP and LPR).  Comparisons made include 
daily statistics and extremes (Table 3), monthly statistics (Table 
4), monthly extremes (Table 5), annual statistics and extremes, 
and lag-one serial correlation coefficients (Table 6).

Table 3 illustrates that both SE8 and BC8 generated data, had 
daily means, and standard deviations that were reasonably close 
to the statistics of data from the Later Period.  In terms of overall 
daily means, SE8 and BC8 are 4.6mm and 4.4mm, respectively 
compared to EAP and LPR of 4.4mm and 4.6mm, respectively.  
For overall daily standard deviations, SE8 and BC8 are 15.7mm 
and 14.9mm, respectively compared to EAP and LPR of 15.6mm 
and 15.4mm, respectively. For overall daily skews, SE8 and BC8 

Figure 3: Flowchart of the split sample approach

 
Means 
(mm)

Standard Deviations 
(mm)

Skews 
(mm)

Daily Maxima 
(mm)

MON EAP     LPR     SE8     BC8  EAP      LPR       SE8     BC8  EAP       LPR       SE8      BC8   EAP      LPR       SE8      BC8

Jan 4.8        4.9        5.3        4.9  16.4        10.3       16.2      15.3   11.3         3.1         6.6        6.8  423.5       66.4      506.5    249.1

Feb 5.5        6.3        5.2        5.0  17.5        16.5       16.4      14.7    7.4          5.7         6.9        6.0  308.9     157.4      314.6    212.3

Mar 5.8        7.2        5.7        6.1  18.2        24.0       17.2      17.7    6.3          6.9         6.1        5.6  242.9     291.6      301.0    212.9

Apr 4.9        5.3        5.0        5.2  16.5        14.8       16.2      17.2    7.0         5.7          6.2        6.1  258.1     191.1      329.7    206.8

May 4.8        4.7        5.0        4.9  17.7        14.1       17.3      16.7    7.9         6.0          6.8        7.0  268.0     177.0      375.0    244.2

Jun 6.1        5.4        6.3        6.1  19.3        17.7       19.6      18.9    5.6         6.9          6.1        5.3  236.2     211.5      510.7    195.4

Jul 4.6        2.2        4.3        4.5  18.0        10.8       15.5      16.2    8.3        12.7         7.1        7.1  285.2     194.2      386.4    275.6

Aug 3.1        3.8        3.2        3.0  11.4        21.8       12.4      11.1   8.2          9.9          8.9        7.7  196.9     262.0      345.9    203.3

Sep 3.1        3.0        3.2        2.9    9.9         9.3        10.0       9.2   6.5          6.3          5.7        5.7  141.4     111.0      130.9    137.9

Oct 3.7        4.7        4.1        3.8  15.0        14.9       16.7      14.3   9.2          7.6          9.8        8.3  243.8     208.6      466.0    244.3

Nov 2.9        4.3        3.0        2.8    8.9        12.3        8.6        8.1   6.8          6.6          5.5        6.2  137.6     157.7      131.4    146.5

Dec 4.1        3.1        4.3        3.9   132         9.1        13.8      11.8   7.3          5.7          6.8        6.3  190.1       97.4      289.4    193.9

All 4.4        4.6        4.6        4.4  15.6        15.4       15.7      14.9   8.1          8.5          8.4        7.1  423.5      291.6     510.7    275.6

Table 3: Daily rainfall statistical comparisons
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are 8.4mm and 7.1mm, respectively compared to EAP and LPR 
of 8.1mm and 8.5mm, respectively.  There are slight deviations 
in the monthly distribution of daily means, standard deviations 
and skews.  Most of the deviations observed were in fact due 
to the difference between statistical measures of the Earlier and 
Later data (two separate samples from the same population).  
Nevertheless, for daily means, differences between generated 

and Later data were mostly less than 2 mm.  For 
daily standard deviations, both models were 
generally satisfactory except for extreme values in 
March and August.  For daily skews, most values 
were satisfactory, except for January and July 
where there are differences between the two (2) 
recorded data sets (EAP and LPR) which result in 
differences between generated and Later data.  For 
daily maxima, most generated maxima are greater 
than the recorded values (both EAP and LPR) 
indicating ability of the model to simulate extreme 
events beyond the available record.  

For the monthly statistical comparisons, both 
variations of TPM model are generally satisfactory 
compared to the Later data (shown in Table 4). 
For monthly means, SE8 and BC8 are 138.5mm 
and 134.5mm, respectively compared to EAP and 
LPR of 135.8mm and 138.9mm, respectively. For 
monthly standard deviations, SE8 and BC8 are 
138.7mm and 134.1mm, respectively compared 
to EAP and LPR of 144.7mm and 133.8mm, 
respectively. For monthly skews, SE8 and BC8 
are 2.3mm and 2.0mm, respectively compared to 
EAP and LPR of 2.4mm and 1.5mm, respectively.  
Satisfactory monthly distribution of monthly 
means was observed.  However, comparisons of 
monthly distribution of monthly standard deviations 
indicate significant differences were observed on 
four occasions. Nevertheless for monthly skews, 
satisfactory values were generated.  

For both monthly maxima and minima, both 
model variations generated greater maxima and 
lower minima (except for overall minimum), 

indicating ability to simulate extreme events beyond the available 
record (as illustrated in Table 5). Table 5 shows that for this 
approach to be satisfactory, the data needs to be stationary in 
terms of its statistical variations, as indicated by some variations 
in monthly statistics due to differences between the two (2) sets of 
recorded data.

Table 4: Monthly statistical comparisons

Table 6: Annual statistical comparisons and lag-one serial correlation coefficients

 Means (mm) Standard Deviations (mm) Skews (mm)

MON     EAP         LPR          SE8           BC8     EAP          LPR           SE8         BC8     EAP          LPR          SE8          BC8

Jan    148.9         152.3        162.9         152.3    140.9         114.7         123.3        119.9      2.3             1.1             1.0            1.3

Feb    161.1         178.7        147.5        140.3    162.4         135.2         129.5        129.5      2.1             0.8             1.5            1.6

Mar    181.0         221.7        175.7        188.7    181.6         167.1         146.0        161.9      1.8             1.0             1.5            1.1

Apr    146.6         159.7        151.5        155.8    125.6         154.2         132.2        147.5      1.7             1.5             1.3            1.5

May    147.5         144.7        155.8        150.6    177.6         125.5         157.7        137.1      2.9             1.1            1.5             1.5

Jun    183.8         162.4        188.9        194.6    194.6         164.5         184.6        167.5      1.6             1.5            1.3             1.0         

Jul    142.7          67.8         133.0        140.0    146.0          65.0          139.3        132.3      1.9             1.7            1.6             1.1

Aug     96.6          119.1         98.6           92.1    107.6         174.9         114.3          96.7      2.0             1.7            2.0             1.7

Sep     92.0           88.6          63.4          87.6     75.1           77.8            79.9          79.4      1.4             0.9            0.9             1.3

Oct    114.6         146.6        127.9        117.5    137.9         146.7         124.0        127.0      3.1             1.2            1.8             1.9

Nov     88.3          129.9         89.7          82.6      81.3           94.0           74.1         65.4      2.4             1.2            1.6             1.6

Dec    126.2          95.3         134.5        122.0    118.0           83.4          130.6       106.3      2.0             1.4            2.0             1.6

All    135.8         138.9        138.5        134.5    144.7         133.8          138.7       134.1      2.4             1.5            2.3             2.0

Measures   EAP         LPR SE8 BC8

Average (mm) 1629.2         1666.8 1662.5 1613.5

Standard Deviations (mm) 515.0 537.2 456.8 487.4

Skew (mm) 0.5 0.7 0.5 0.5

Maximum (mm) 3103.1 2950.0 3197.8 3228.5

Minimum (mm) 684.9 902.5 621.6 275.6

Lag-one Serial Correlation Coefficient, r1 0.436 0.465 0.393 0.405

Table 5: Monthly extreme comparisons

Means (mm) Standard Deviations (mm)

MON   EAP       LPR       SE8       BC8    EAP          LPR         SE8         BC8

Jan    5.1          20.4       10.7        8.4   815.8         435.4        786.8        588.1

Feb    2.4          39.3        6.5        16.0   851.5         470.9        759.4        847.9

Mar    4.6          14.4        9.5         3.7   792.7         662.3        894.8        886.9

Apr    5.0          23.6        5.0         1.5   717.4         630.5        894.8        756.1

May    0.7           5.1         0.3         3.3  1079.9        489.3        967.5        957.8

Jun    1.8          16.2        1.2         0.3   982.2         576.4       1039.4       991.9

Jul    5.1           0.0         0.9         0.5   686.8         261.2       1287.1       748.6

Aug    1.7           5.3         0.5         1.0   551.4         543.3        742.0        541.2

Sep    4.6          11.9        3.8         2.6   387.0         248.9        399.4        420.9

Oct    3.4           2.6         9.5         6.6   828.4         471.6        637.7       1038.9

Nov    1.5           9.6         1.3         4.7   519.4         391.2        753.6        519.6

Dec    5.9           9.6         8.2         3.3   700.8         328.3       1041.9       724.8

All    0.7           0.0         0.3         0.3  1079.9        662.3       1287.1      1038.9
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In Table 6, annual statistics including average, standard 
deviations and skews for both TPM model are satisfactory compared 
to the Later Period.  The average annual rainfall for EAP and LPR 
are 1629.2mm and 1666.8mm, respectively, compared to SE8 and 
BC8 of 1662.5mm and 1613.5mm, respectively.  For the annual 
extremes, higher annual maximum and lower annual minimum 
were generated, indicating ability of model to generate extreme 
events beyond the available data.  The serial correlation coefficients 
were also reasonably satisfactory generated by both TPM models 
(SE8 and BC8 with 0.393 and 0.405, respectively) compared to the 
recorded data (EAP and LPR with 0.436 and 0.469, respectively).  

Generally, in comparing the two variations of the TPM models, 
the shifted exponential distribution seems to be slightly more 
satisfactory compared to the Box-Cox Power transformation (as 
shown in Tables 3 to 6). Nevertheless, the purpose of this study is 
to illustrate the ability of stochastic daily rainfall generation models 
to generate data for the future, not so much comparing between the 
two TPM model variations.  

6. DISCUSSIONS
In general, the use of Earlier Period data to generate data for 

the Later Period shows satisfactory statistical comparisons for both 
variations of TPM model (SE8 and BC8).  In conclusion, apart from 
a few slight differences, the daily rainfall data generation generally 
yielded satisfactory statistical comparisons between the generated 
data (using historical data from the Earlier Period) and the future 
data (Later Period). These findings supported the use of historical 
data statistics for stochastic long-term data generation. Stochastic 
data generation seem to be more accepted in the developed countries 
compared to developing countries. However, the advancement in 
computer technology in recent times has provided opportunities 
for much faster data generation to be made. This should encourage 
revisit of the stochastic data generation approach as potential tools 
in forecasting and planning. These stochastically generated data 
can then be utilised for planning or forecasting purposes in cases of 
limited data availability.  

7. CONCLUSIONS 
The study intended to illustrate the applicability of using stochastic 

rainfall data generation to generate rainfall data for the future by using 
the split sample approach. The statistical properties such as average, 
standard deviations and skews of the source daily rainfall data from 
(EAP) were reproduced well by the stochastic model used, namely 
the 8x8 TPM with Box-Cox Power Transformation (BC8) and 8x8 
TPM with Shifted Exponential Distribution (SE8). These statistical 
measures were found to be comparable to the statistical measures of 
daily rainfall data in the subsequent period (LPR). Thus, the study 
has met its objectives of using the split sample approach to illustrate 
that stochastic daily rainfall data generation can be used to generate 
daily rainfall data. n
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