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abstract
The design and simulation of force sensor with piezo resistive rectangular strain gauge is presented in the paper. A piezo resistive 
metal gauge on thin rectangular membrane is designed based on ANSYS simulation result. A force sensor having piezo resistive 
rectangular strain gauge on thin plate is designed. The simulation result yields the percentage of strain transferred from thin 
plate to substrate and to the gauge due to the applied force. Theoretical studies on piezo resistive metallic gauge on rectangular 
membrane and force sensor are presented. A maximum of 0.70348με and maximum resistance change in gauge (grid) = 177.27μΩ 
are achieved for an applied force of 1mN.    
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1.  INTRODUCTION
A strain gauge converts force, pressure, tension, weight in to 

a change in electrical resistance which can then be measured. The 
operational principle of metal gauge is based on the fact that any 
electrical conductor changes its resistance with mechanical stress. 
It is due to changes in the conductor cross section and resistivity 
caused by micro structural changes. The size of the strain gauge is 
usually decided by the space available or by the topography of the 
strain field. There is no physical constraint in choosing the gauge 
dimension [1]. Strain gauge equations are derived based on small 
deflection theory [2 - 4]. Finite element tool, ANSYS, is used to 
find the maximum strain distribution location on the membrane. 
It allows choosing the desired gauge orientation and active region 

on the membrane to achieve maximum sensitivity. Materials like 
Polyimide, Polystrene, and Silicon are studied as a substrate for 
gauge design. However, Polyimide is found to develop maximum 
strain (Figure 1) and hence it is chosen as a substrate for gauge 
design [5, 6]. With its ease of handling and its suitability for use 
over the temperature range from -195˚C to +175˚C, Polyimide is 
an ideal substrate for general purpose static and dynamic stress 
analysis. The alloy ‘constantan’ is used as gauge (grid) material 
for strain gauge design. It is a commonly used as a peizoresistive 
metal gauge material. Its high peel strength makes the gauge less 
sensitive to mechanical damage during installation [7]. To the 
knowledge of authors, there has been no theoretical study exists 
on piezo resistive metallic gauge on rectangular membrane for 
strain measurement. In the present study, equations are derived 
for piezo resistive metallic gauge on the rectangular membrane 
for strain measurement. A force sensor is designed using this 
strain gauge and its individual components strain distribution 
is analysed. In addition, the percentage of strain transformed 
from one component to another component is calculated. 
This feature could be used to choose the right material for the  
design effectively.

2. THEORETICAL STUDY
  The change in resistance of the gauge on the rectangular 
membrane due to an applied load is calculated by strain developed 
in the membrane and passed on to the gauge. It is discussed in the 
following subsections [8]. 

2.1  STRAIN ON RECTANGULAR MEMBRANE 
The strain distribution on a rectangular membrane depends 

on its geometry, boundary conditions and applied load. There are 
two different cases discussed in this paper. They are the supported 
edges and the clamped edges. The applied pressure P is constant 
over the entire membrane.

(Date received: 22.11.2007)

Figure 1: Different substrate materials
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2.2.1 Supported edge:  The maximum strain developed at the long 
side edges as shown in Figure 2 is due to applied pressure P. The 
strain on the membrane is given by Equation (1) [9].

εmax =                                                                                            (1)

where β is a constant, which varies with respect to aspect ratio. 
w is the width of the membrane. P is the applied pressure, t is the 
thickness of the membrane, and Y is the Young’s modulus of the 
membrane material.

2.1.2 Clamped Edge: The maximum strain developed at center of 
the membrane as shown in Figure 3, is due to the applied pressure 
P. The strain on the membrane is given by Equation (2) [9].

εmax =						                    (2)

where β1 is a constant, which varies with respect to aspect ratio. 
w is the width of the membrane. P is the applied pressure, t is the 
thickness of the membrane, and Y is the Young’s modulus of the 
membrane material.

2.2  STRAIN ON GAUGE 
The resistance of the gauge (grid) is given by Equation (3) [10].

R = ρ						                    (3)

A = WT						                    (3)

where, A is area of the gauge (grid) wire, 
where, l is the length of the gauge wire, W is the width of the gauge 
wire, T is the thickness of the gauge wire, and ρ is the resistivity of 
the gauge wire. Under strain the rate of changes in R.

        =           −         +				                  (5)

      
        =           +				                                 (6)

where dW and dT written in terms of strain are given by Equations 
(7) and (8) [11]. 

dW = −γεW					                   (7)

 dT = −γεT					                   (8)

        Can thus be rewritten as

 				  
        =  (1 + 2γ)ε +  				                  (9)

where γ is the Poisson’s ratio and ε is the strain.

The fractional change in resistivity,        , is due to piezo resistivity[11].  

In metals,        is related to fractional change in volume,        [6].

        = K         = K (        +        )       		              (10)

as V = lA

        = Kε(1 − 2γ) 				                (11)

 
where K is the Bridgman constant, 1.13 ≤ K ≤ 1.15
Substituting Equations (11) in to (9) yields

        = ε[1 + K + 2γ(1 − K)]  			               (12)

Equation (12) is used to calculate the changes in the gauge resistance 
due to strain, ε, developed on membrane.

2.3 RESISTANCE CHANGE IN THE GAUGE IN 
TERMS OF STRAIN DEVELOPED ON MEMBRANE    
For the supported edge case, the changes in the gauge resistance are 
obtained by Equations (12) and (1).

dR = R                 [1 + K + 2γ(1 − K)]  		              (13)

Figure 2: Supported edge

Figure 3: Clamped edge
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For the clamped edge case, the changes in the gauge resistance are 
obtained by Equations (2) and (12).

dR = R                  [1 + K + 2γ(1 − K)]  		              (14)

2.4  FORCE SENSOR  
The piezoresistive strain gauge designed by ANSYS simulation 

result is used to design the force sensor. To design the force sensor 
the strain gauge is fixed on one end of thin plate, P′, as shown in 
Figure 4. The other end of thin plate is free which is used to apply 
a load. Since the strain gauge (clamped) fixed on the thin plate, 
clamped edge boundary condition strain gauge Equation (14) used 
to develop the force sensor. Therefore the force sensor equation is 
given by Equation (15).

dR = R x [1 + K + 2γ(1 − K)] x εs 		                             (15)

Where, εs is the function of strain in substrate due to strain 
transferred from the thin plate.

Strain in substrate is,  εs  =

where,εp′ , is the strain in thin plate,  εp′  =

where F is the applied force, L is the total length of the thin plate, 
(L − x) is the gauge distance from the applied force, F, Y1 is the 
Young’s modulus of the thin plate, P′, w1 is the width of the thin 
plate, and t1 is the thickness of the thin plate as shown in Figure 4.

   
3.  SIMULATION  

The finite element analysis software ANSYS [12−14] is used 
to find the strain distribution and the strain calculation on the 
sensor components. The strain distribution is used to choose the 
maximum strained area on the substrate for gauge design. This 
allows to design highly sensitive strain gauges. However, the 
strain calculation on sensor components are used to calculate 
percentage of strain transferred from one component to another 
component.  This helps to find out maximum strained components 
and these values are given in Tables 2 and 3. The design tool Pro 
ENGINEER is used to design the sensor components such as thin 

plate, P′, substrate, and the gauge. ANSYS solid brick element 
having 8 node 185 structure is used for finite element analysis 
since it is generally used for bending strain and stress analysis. 

3.1  SUBSTRATE AND GRID  
A substrate having a length 9.5 mm, a width 3.5 mm, and a 

thickness = 0.05 mm is chosen in this paper for the design and 
analysis. The substrate is simulated for the supported and clamped 
edge boundary conditions. The maximum and minimum strained 
locations of both the clamped and supported edge substrates 
are marked as shown in Figures 2 and 3 respectively. In Figure 
2, the maximum strain locations for supported edges are at the 
long side edges. Since the minimum strained locations are at 
the center, the gauge design on the center area is insensitive. 
Hence, the clamped edge boundary condition is used for the 
strain gauge design. The substrate mesh element matrix size is 
95 x 35 divisions since its dimension 9.5cm x 3.5 cm. Because of 
limitation at convergence, the mesh element matrix size should 
not exceed 95, 35. Successive iteration result shown in Figure 5 Figure 4: Force sensor

Figure 5: Strain variation vs Matrix divisions

Figure 6: Maximum strained area represented by rectangle box
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should be less than 5% to get maximum strain location at center 
as shown in Figure 6. However, the increase of matrix division 
increases strain (Figure 5) but the maximum strain distribution 
area is shifted towards long side edges as in Figure 2. For smaller 
value of the matrix dimensions, the maximum strain distribution 
area remains at the center but its strain value decreases. 
Therefore, the maximum strain value and its corresponding 

strain area are based on the convergence limitations. The 
area of maximum strained region i.e., active region for gauge 
design is found to be 3.9mm x 0.9mm as shown in Figure 6.  
A 7 loop strain gauge is designed in this paper since the same 
number of loop gauges is used in the industry. An active length 
= 3.9mm, a single line width = 0.0333mm, and a thickness = 
0.003mm gauge (grid) pattern is designed and assembled on the 
maximum strained area found (Figure 6) as shown in Figure 9. 
The substrate and the gauge are meshed independently while 
maintaining the continuity. 

The strain variation with matrix divisions is shown in Figure 5. 
Though the strain value increases with increase of matrix division, 
its convergence limits the mesh element size, i.e., the successive 
iteration of element size result must be less than 5%. Increasing 
the value of matrix division shifting the maximum strained area to 
the long side edges as in Figure 2.

The maximum strain developed area is represented by 
rectangular box as shown in Figure 6. Design of gauge (grid) 
pattern on this Red region allows us to get maximum sensitivity. 
The gauge pattern also designed and analysed for other contours 
such as Brown, Yellow, Yellow2, and Green. The results are given 
in Table 1.

The strain distribution in X-component is given in the  
Figure 7. Since the maximum strain (shown in Red colour) 
concentrates at the center area and the areas near the middle edge 
of the membrane, the piezo resistive gauge should be arranged 
within this area [15]. 

Table 1: Area of different contours and its corresponding strain

Colour
Length 
(mm)

Width
(mm)

Strain in Gauge 
(µε)

Strain in Substrate 
(µε)

Strain in Substrate 
and Gauge 

(µε)

% Strain transferred from  
substrate to gauge 

(µε)

Red 3.9       0.9 0.3241 0.4052 0.4403 79.9851

Brown 5.2 1.3 0.2382 0.3470 0.3924 68.6455

Yellow 6 1.7 0.0998 0.1874 0.2728 53.2550

Yellow2 6.7 1.9 0.0982 0.1459 0.2341 61.1377

Green 7.3 2.1 0.0688 0.1372 0.2184 50.1457

Figure 7: X−Component strain distribution Figure 9: Gauge pattern on maximum strained area of substrate

Figure 8: Y−Component strain distribution
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The maximum strained area on substrate can be determined 
from Table 1. Furthermore, the strains on gauge and the substrate 
are calculated independently. However, the percentage of strain 
transformed from substrate to gauge is calculated and given in 
Table 1. The red colour contour and its corresponding gauge 
(grid) pattern design provides maximum strain. It also provides 
maximum percentage of strain transferred from substrate to grid 
through red contour. Hence the red contour is chosen for the 
gauge design.

For different values of pressure, strain 
gauge and its components strain values 
are given in Table 2. Percentage of strain 
transformed from the substrate to the grid 
is constant for all pressure. This shows 
that the gauge (grid) pattern is designed 
exactly on the maximum strained area 
of the substrate. This helps to achieve 
maximum sensitivity.

The linear variation of resistance 
change with respect to applied pressure 
on the substrate is shown in Figure 10. 
This reveals that the gauge resistance has 
linear response to the applied pressure. 
The maximum applied pressure and 
its corresponding strain obtained for 
Polyimide substrate is 70Pa and 4051με 
respectively. Similarly, for Polystrene, 
85Pa is the maximum applied load and its 
maximum strain is 41540με and for silicon 
2.5KPa is the maximum applied load and 
its maximum strain is 41204με. All of 
the three substrate materials behave non-
linearly when the applied pressures are 
larger than the above values. These results 
are obtained by ANSYS simulation.

3.2  FORCE SENSOR
A force sensor is designed and analyzed 
by Pro ENGINEER and ANSYS [15] 
respectively. It includes a thin plate, P′, 
a substrate, and a gauge. A thin plate, P′, 
having a length of 20mm, a width of 7mm, 
and a thickness of 0.1mm is chosen in this 
paper. The strain distribution on thin plate 
is shown in Figure 11. It is used to find out 
maximum strained locations on beam to 
fix strain gauge on it. From Figure 11, the 
maximum strain distribution is only at the 
fixed edge. Whereas, the minimum strains 
developed on free edge. Hence, the strain 
gauge is fixed at maximum strain area to 
achieve maximum sensitivity.

The strain distribution on sensor 
components such as the thin plate, P′, 
the substrate, and the gauge is shown 
in Figure 12. The strain developed on 
the force sensor and its components are 
given in Table 3. It is used to calculate 
percentage of strain transformation from 
one component to another component 

such as thin plate, substrate, and gauge (grid) and helps to study 
material performance under different load. However, this analysis 
allows choosing right material, dimension, and orientation of 
components before fabrication.

CONCLUSION
Design and simulation of a piezo resistive metal gauge and a 
force sensor have been studied. Equations were obtained for the 
metal gauge on rectangular membrane and force sensor. Different 

Table 2: Strain in gauge, substrate, and the combination of gauge and substrate

Pressure
Strain in
gaue (µε)

Strain in
substrate (µε)

Strain in gauge and 
substrate (µε)

% Strain transferred from  
substrate to gauge

 1 0.3246 0.40527 0.44039 80.0947

 10 3.242 4.053 4.404 79.9901

 20 6.483 8.106 8.808 79.9777

 40 12.966 16.211 17.616 79.9827

 60 19.45 24.317 26.424 79.9851

 80 25.933 32.422 35.232 79.9858

 100 32.416 40.528 44.04 79.9842

 200 64.832 81.055 88.079 79.9851

 300 97.248 121.583 132.119 79.9848

 400 129.66 162.111 176.159 79.9847

 500 162.08 202.638 220.199 79.9854

 600 194.49 243.166 264.238 79.9852

 700 226.91 283.964 308.278 79.9090

 800 259.32 324.221 352.318 79.9852

 900 291.74 364.749 396.357 79.9851

 1000 324.16 405.277 440.397 79.9850

Figure 10: Resistance change in gauge variation vs applied load
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substrate materials were studied and Polyimide was chosen as 
a substrate for the strain gauge design. The maximum strained 
locations were identified on the substrate for different boundary 
conditions. The gauge patterns were designed for different 
contours. The maximum strained area and its corresponding 
gauge pattern was chosen as a strain gauge. A force sensor was 
designed by the designed piezo resistive metal strain gauge, and 
its simulation results show that the resistance change of gauge 
is linear to the applied force. The simulation result allows us 
to calculate percentage of strain transferred from thin plate to 
substrate and to the gauge and also has been used to calculate 
individual sensor components strain values. n
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