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INTRODUCTION
Rigid frame and continuous beam analysis is a very

important subject for the structural engineer.
The method of moment distribution was first introduced by

Professor Hardy Cross to his students at the University of
Illinois (USA) in 1924 and published in 1929 [1]. It has been
considered one of the greatest contributions ever made to
structural theory. The method has provided a means to analyse
many types of continuous frames, which were formerly
designed by empirical rules or approximate methods, can be
analysed with accuracy and comparative ease. 

Thirty years later, the Portland Cement Association of the
USA published the 2-Cycle Moment Distribution Method in
1959 [1]. This is not a new method and it has been tested over
a period of years in the analysis of numerous building frames.
Its speed and accuracy certainly are of great assistance to
designers.

The author came to know about this method when he was
working for a consulting firm in London in 1972. He wrote an
article on the 2-Cycle Method which was published in the IEM
Bulletin in August 1978 [2] and Dr. Leong Tuck Wah of the
University of Singapore also wrote and published in the IEM
Bulletin in December 1978 [3].

It is considered necessary to revise the article. However, the
readers are assumed that they are familiar with the Hardy Cross
moment distribution method.

As the name implies, the 2-Cycle Moment Distribution
distributes moments twice regardless of the number of spans in
a continuous frame. Moments are carried over first and are
included with fixed-end moments before the distribution is
made. And both dead load (D.L.) and total load (T.L.) are
distributed simultaneously to obtain critical moments at supports
as well as spans. Besides, maximum moments in the columns
can be obtained fairly quickly. Whereas in the Cross Method the
process of distribution is repeated for many cycles in order to
bring balancing or carry-over moments to very small
magnitudes. It can only obtain moments at supports but not at
spans. Besides, dead load and total load are distributed
s e p a r a t e l y. The Cross Method is comparatively time consuming.

THE CONCEPT OF FIXED-END MOMENT
In Figure 1(a), beam AB deflects under a load Pand the

tangents at the ends will rotate through angles θA and θB.
In Figure 1(b), the end at A is restrained by a moment MAB

and the angle change at A is smaller than θA.
In Figure 1(c), when the angle changes are zero at both

supports A and B, the beam AB is said to have fixed ends, and
the restraining moments are called fixed-end moments, MF

AB

and MF
BA.

The fixed-end moment is very useful in beam design since
it is independent of other members in the frame and also is a
major part of the actual end moment in the beam. One
objective in frame analysis is to determine the minor correction
to the fixed-end moment to give the actual moment.

STIFFNESS AND CARRY OVER FACTOR
In Figure 2, beam AB of constant cross section is simply

supported at B and fixed at A. A counter-clockwise rotation of
θB may be effected by applying a counter-clockwise moment of
MBA at B, and this in turn induces a resisting moment MAB on
the member at A.
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Figure 1: Beam with various degrees of restraint
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It can be proved that MBA= KθB and MAB= 1/2 MBA, where K
is the stiffness of the member. For the members with constant

section, K equals        , which is referred to as the absolute 

value.  A relative value of K =       is preferred when E is

constant throughout a frame, where E is the modulus of
elasticity, I is the second moment of inertia and Lis the
member length. The two equations show that:

1. The stiffness K at B equals the moment at B required to give 
B a unit rotation when A is fixed.

2. The moment required to rotate B through a given angle is 
proportional to the stiffness K.

3. Applying a moment MBA at B will induce at A a moment 
MAB = 1/2 MBA. The factor of 1/2 is called the “carry-over
factor”.

The concepts of stiffness and carry-over factor together
with the concept of fixed-end moment are used in moment
distribution.

SIGN CONVENTIONS
Fixed-end moments are considered negative on both sides

of a joint. Hence, moments are negative in “humps” (tension in
top) and positive in “sags” (tension in bottom).

In Figure 3(a), the fixed-ended beam has central portion
sags (plus) and the outer portions hump (minus). 

In Figures 3(b) and 3(c), the clockwise and counter-
clockwise rotation about a central support B, of a continuous,
fix-ended frame show that the beam sags on one side and
humps on the other side. It is also clear that the beam sags at
one end of a member because of joint rotation, it will hump at
the opposite end. Similarly, under the action of a moment, a
column can be treated as a beam when viewed from the right
and the same sign convention for beams can be applied.

MOMENT DISTRIBUTION AT ONE JOINT
In Figure 4(a), the frame consists of four members fixed at

their far ends. The moment U will rotate at joint B until the sum
of the resisting moments induced in the four members is equal
to U. Since all members are rigidly connected at B, each
member will rotate through the same angle at this joint.

In Figures 4(b) and 4(c), joint B is being rotated clockwise by
an external moment U = 69kNm. Stiffnesses, distribution factors,
distributed moments and carry-over moments are as shown.

Figure 4(a) indicates that the clockwise rotation of joint B
creates a hump to the left, but a sag to the right. Therefore 19
is negative but 18 is positive. There is also a sag at A and a
hump at D; therefore the carried-over moments are +10 at A
and -9 at D. In moment distribution, U is called the
“unbalanced moment” and is computed as the numerical
difference between adjacent fixed-end moments.

Viewing from the right, the vertical members (which
become horizontal), Figure 4(a) indicates that the clockwise
rotation of joint B creates a hump to the left, but a sag to the
right of B. Therefore 22 is negative and 10 is positive. There is
also a sag at E and a hump at C; therefore the carried-over
moments are +11 at E and -5 at C.

Figure 4(d) shows a BMD drawn on the tension face of 
a member.

MAXIMUM SUPPOR T MOMENT
As the name implies, the 2-Cycle Moment Distribution only

‘ d i s t r i b u t e s ’twice regardless of the number of spans in a
continuous beam or frame. It also distributes total load and dead
load simultaneously. This can be best illustrated by an example.

Let us consider the example of a 4-span continuous beam
as shown in Figure 5. The problem is to determine maximum
support moments. Figure 6 contains five groups of calculations
for moments at the supports.

To assume maximum moment at support A, place total load on
span AB and dead load on span BC as shown in Figure 6. As long
as support B is considered fixed, the end moments at B are 67.5 to
the left and 20 to the right. The difference is 47.5. When B is
released, the moment distributed to the left = 47.5 x 2/5, and the
moment carried over to A while A remains fixed is 47.5 x 2/5 x 1/2
= 9.5. The counter-clockwise rotation of joint B creates a hump in
the beam at A. Therefore the moment of 9.5 carried over to A i s
negative. Joint B is then relocked in its new position. Now turn to
A which so far has been considered locked. The original fixed-end
moment is -67.5, but the release and rotation of B transfers an
additional moment to A, and at this stage the modified total fixed-
end moment is -67.5 – 9.5 = -77. Since there is no fixed-end
moment to the left of A, the unbalanced moment equals 77.
Releasing A and permitting it to rotate induces a distributed
moment at A equals to 77 x 1 = 77. When joint A rotates clockwise
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Figure 2: Moments in beam with one end fixed, other end being
rotated

Figure 3: Signs illustrated by means of curvature and deflection of
beams and columns



it tends to create a sag in the beam at A. Therefore 77 is positive
and the final maximum moment at A is -77+ 77 = 0.

To determine moments at B, begin with releasing joints A a n d
C, Figure 6 shows how to compute the two moments 33.75 and

0.35 carried over to B. When A and C are released they rotate so as
to create a hump on one side and a sag on the other side of the fixed
joint B, therefore 33.75 is negative and 0.35 is positive. While B is
still considered fixed, the modified total fixed-end moments at B
are -101.25 to the left and -29.65 to the right and out of balance at
B is -101.25 + 29.65 = -71.6. Release joint B, multiply 71.6 by the
distribution factors 2/5 and 3/5, and record the results 28.64 and
42.96 as shown. The counter clockwise rotation at joint B creates a
sag to the left (+28.64) and a hump to the right (-42.96). Distributed
or balancing moments at joints C, D and E are determined by the
same procedure as shown in Figure 6.

The operations illustrated in Figure 6 show that moments are
distributed twice. Moments are carried over first and are
included with fixed-end moments before the distribution is
made. In the previous calculations, the five groups have five
d i fferent arrangements of loads i.e. total loads on spans adjacent
to the particular joint at which maximum moments are computed
but dead loads only on the next outside spans. Yet the
calculations as shown in Figure 6 can be consolidated into one
single group without any interference as shown in Figure 5. It is
clear that the results as shown in Figure 6 between the 2-Cycle
Moment Distribution and computer analysis are quite close.

THE METHOD OF CALCULA TING
MAXIMUM SUPPOR T MOMENT :

Step 1 Write down D.F., MD.L & MT.L. ,

where M = -           for a uniformly distributed load, W.

Step 2 Calculate and write down C/O
C/O = 1/2 x D.F x (MT. L - MD . L)

Step 3 Obtain total unbalanced moment (∑M) by adding
MT. L to C/O

Step 4 Balancing moments are of opposite sign to reduce
l a rger moment.

Step 5 Add ∑M to balancing moment for max. support
m o m e n t .

MAXIMUM MOMENT AT MIDSPAN
To determine maximum moments at midspan the positive

midspan moments shown as +33.75, +15.0, + 23.44 and +33.75
are taken from Figure 5 for beams with fixed ends. Certain
corrections are to be added to these moments in order to obtain
the final maximum moments at midspan.

The procedure is illustrated for span BC in Figure 7.  
Distribution = D.F (MT. L - MD . L) .

The distributed moments induced at B and C give 9 and 0.69
r e s p e c t i v e l y.

The counter-clockwise rotation of moment at B creates a hump to
the right of B and a sag to the left of C. Therefore, 9 is negative and 4.5
is positive. The clockwise rotation of moment at C creates a hump to
the left of C and a sag to the right of B. Therefore 0.69 is negative and
0.35 is positive. The counter-clockwise rotation of 0.35 creates a hump
to the right of B. Therefore 0.21 is negative. The clockwise rotation of
4.5 creates a hump to the left of C. Therefore 2.5 is negative.
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Distributed moment: [ K /∑K] x U, carry-over moment:1/2 x [K/∑K] x U

Figure 4: Frame consisting of four members with far ends fixed
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Figure 5: Max. M (Support & Midspan) for a continuous beam over supports providing no restraint to rotation at A, B, C and D
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Figure 6: Moment distribution illustrated in its various elements
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The corrections or adjustments at supports B and C are 
(-9+0.35-0.21) and (-0.69+4.5-2.5) respectively. Therefore the
corrections or adjustments at the midspan are 

and                               .  It can be shown that the corrections or 

adjustments are                                    due to left hand support 

at B and                                        due to right hand support at C 

as follows:

As         and        are the distribution factors at the right hand 

support and left hand support respectively; 4.5 and 0.35 are the
C/O at the right hand support and left hand support respectively.
Therefore, they are the adjustment or correction due to right
hand support and the adjustment or correction due to the left
hand support. These adjustments or corrections added to
midspan moment to obtain maximum midspan moment.

THE METHOD OF CALCULA TING
MAXIMUM MIDSP AN MOMENT IS AS
FOLLOWS:

Step 1 Write down mid-span moment due to total load as if
beam is fully fixed at each end.

MT.L. =         for a uniformly distributed load, W.

Step 2 Calculate & write down ‘adjustment’ due to left hand
s u p p o r t .
i.e. Adj. M l =  -1/2 (1 + D.F) x C/O

Step 3 Calculate & write down ‘adjustment’ due to right hand 
s u p p o r t .
i.e. Adj. M r =  -1/2 (1 + D.F) x C/O

Step 4 Add both adjustments to midspan moment to obtain 
max. midspan moment.

Figure 7: Two corrections for Midspan M
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MINIMUM MOMENT
Span BC is shorter than the adjacent spans. It is possible that

negative moments may extend across the shortest span. It is
therefore necessary to calculate the minimum moment at midspan
of span BC.

The loading in Figure 8(a) has dead load only on span BC and
total load on the adjacent spans. The procedure is the same as that
described in previous sections. The results show that a minimum
moment of -7.06 at midspan. This shows that the entire span BC
is hogging throughout and reinforcement must be provided
accordingly for concrete beam. 

(y) C/O = (-20 + 46.88) x 5/9 x 1/2 = +7.47
(z) C/O = (-20 + 67.5) x 3/5 x 1/2 = +14.25
(a1) Adj. M l = - 1/2 (1+3/5) (7.47) = -5.98
(b1) Adj. M r = - 1/2 (1+5/9) (14.25) = -11.08

Hence, minimum moment at midspan is obtained by adding
the adjustments due to right hand support and due to left hand
support to midspan moment.

Figure 9 is a sub-frame of a multi-storey structure. The
calculations and results of the maximum moments at supports
and spans in beams of the sub-frame is as shown in Fig. 10 as
against the result for a continuous beam over supports

providing no restraint to rotation in Figure 5. A check on span
BC shows that the minimum moment at midspan is +2.85.

DETERMINA TION OF COLUMN MOMENTS
For multi-storey buildings, it is considered satisfactory to

compute column moments under the same assumption used for
beam moments i.e. far ends of columns are fixed above and
below the floor at which moments are to be determined. Column
moments are computed for unbalanced floor loading, that is live
load on one side only.

In Figure 9, live load is placed on the alternate spans as shown
on load pattern A and load pattern B.

THE METHOD OF
CALCULA TING THE
MAXIMUM COLUMN
MOMENTS :

Step 1 Write down the distribution factors 
for the columns and for the beams
and the MD . L and MT. L according to 
the load pattern.  

Step 2 Calculate and write down the carry-over moment
(C/O) and C/O = 1/2 x D.F x (MT. L - MD . L)

Step 3 Obtain total unbalanced moment (∑M) by adding
MT. L to C/O

Step 4 Maximum column moments are obtained by
multiplying the difference of the beam moments at the
joint by the distribution factors of the columns.

The results of the column moments are shown in Figure
9(a). A summary of the maximum moments obtained using the
2- Cycle Moment Distribution is given as in Figure 9(b)
whereas the maximum column moments determined by
computer analysis is as shown in Figure 9(c). It can be seen that
the differences between the maximum column moments
obtained by the two methods are small in values. It is important
to note that the deflections of columns follow the direction of
the beam unbalanced moment at the joint but the column
moments rotate in the opposite direction and bending moment
diagram should be drawn on the tension face of a member in
normal practice.

It can be seen that the maximum column moments in
columns A, B and C are obtained from load pattern A ,
whereas load pattern B gives maximum column moments in
column D.

ACCURACY OF THE 2-CYCLE METHOD
AGAINST COMPUTER PROGRAMME

For a continuous beam over supports providing no restraint to
rotation as shown in Figure 5 the difference between the 2-Cycle
Method and a computer programme is 11% maximum for
maximum support moments, whereas for maximum midspan
moments the difference is 4% maximum for end spans , and is 17%
maximum for the internal spans. However, the author’s experience
confirms that the difference gets smaller when the live load is
i n c r e a s e d .

Figure 8: Minimum moment at midspan
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The results for maximum moments (support and midspan) in
beams of frame in Figure 10 show that the difference between the
2-Cycle Method and a computer programme is negligible. 

For maximum column moments in Figure 9, the diff e r e n c e
between the 2-Cycle Moment Distribution and a computer
programme is 12% maximum, whereas, the difference is as larg e
as 150% in column C under load pattern B. However, it can be
ignored as the moment is very small. 

In addition to continuous beams and multi-storey
building f rames subject to vertical loads, the 2-Cycle
Method can be used to analyse other types of structures
such as continuous beams subject to settlement at
support, portal  f rames and other rigid f rames subject to
horizontal and vertical loads. And even f rames with side
sway can be solved by this method. After going through
the method and i ts appl ication properly, one wil l  real ise

Figure 9(a): Column moments by the 2-cycle moment distribution
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Figure 9(b,c): Maximum column moments

Figure 10: Max. M in beams of frame shown in Figure 9
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how useful  i t is. Its importance just cannot be over-
emphasised. Structural engineering is an art of science; i t
i s more an art than a science. Hence, structural engineers
are strongly recommended to learn and use this useful
technique. In order to have a good understanding of the
method, readers are advised to read this article
t h o r o u g h l y.

C O N C L U S I O N S
Moment coeff icients may be used only i f  loads and

spans meet the code requirement. The Cross Method is
too time-consuming. I t can give support moment only on
one load case at a time and the process of moment
distribution is repeated unti l  the moments to be carried
over are small  enough to be neglected. Whereas the 2-
Cycle Method is comparatively simpler and faster; not

only support moment but also span moment and column
moment can be obtained fairly quickly by using this
method. A structure basical ly consists of beams and
columns, through the 2- Cycle Method, one can feel,
understand and appreciate structures better and thus gain
conf idence in structural design. The 2-Cycle Method can
be used to counter check computer sof tware as no
structural engineer should ever use unfamil iar sof tware
without applying some verif ication. Hence, i t helps an
engineer to be a computer- aided designer rather than just
a computer operator. ■
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Figure 11: Moment envelop diagram in beams of frame in Figure 9
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