REFERENCES

[1] Marco Wiering, Intelligent Traffic Light Control, April 2003. http://www.ercim.org/publication/Ercim_News/enw53/wiering.html
[2] Thomas L.Floyd, (2006). 'Digital Fundamentals' $8^{\text {th }} \& 9^{\text {th }}$ Edition, Pearson Education International.
[3] De Schutter, B., De Moor B. Optimal Traffic Light Control for a Single Intersection International symposium on nonlinear theory and its applications (NOLTA '97) pages 1085-1088
[4] Roozemond, D.A. Using intelligent agents for pro-active, real-time urban intersection control. European Journal of Operational Research 131(2001), 293301.
[5] Pappis, C.P. and Mamdani, E.H., (1977). A Fuzzy Logic Controller for a Traffic Junction, IEEE Transactions on Systems, Man and Cybernetics, pp 707-717.
[6] Chiu, S., Adaptive traffic signal control using fuzzy logic.Proceedings of the IEEE Intelligent Vehicles Symposium, 98-107, 1992.
[7] Hoyer, R., and Jumar, U., (1994). Fuzzy Control of Traffic Lights, Proc. IEEE International Conference on Fuzzy Systems, 1994, pp 1526-1531.
[8] Janecek, J.J. and Zargham, M.R., (1995). A Fuzzy Logic Controller for a Traffic Signal, SPIE, Vol 2622, pp 687-691.
[9] Chiang, K.T., Khalid, M., Yusof, R. ‘Intelligent Traffic Lights Control by Fuzzy Logic', Malaysian Journal of Computer Science, Nov., 1995
[10] Lin, Q., Kwan, B.W., and Tung, L.J., (1997). Traffic Signal Control Using Fuzzy Logic, Proc. IEEE International Conference on Fuzzy Systems 1997, pp 1644-1649.
[11] Henry, J.J., Farges, J.L., Gallego, J.L. Neuro-fuzzy techniques for traffic control. Control Engineering Practice 6(1998), 755-761.
[12] Trabia, M., Kaseko, M., Ande, M. Two-stage fuzzy logic controller for traffic signals.Transportation Research Part C7 (1999), 353-367.
[13] Niittymäki, J., Nevala, R. Fuzzy adaptive traffic signal control principles and results. Proceedings of the IFSA World Congress and 20th NAFIPS International Conference. Vancouver, Canada, July 25-28, 2001, 2870-2875.
[14] Wei, W., Zhang, Y., Bosco, Mbede, J., Zhang, Z., Song, J. Traffic signal control using fuzzy logic and MOGA. Proceedings of the 2001 IEEE International Conference on Systems, Man and Cybernetics. Tucson, USA, October 7-10, 2001, 1335-1340.
[15] Weng Fook Lee, (1994). 'Verilog Coding for Logic Synthesis' $2^{\text {nd }}$ Edition, John Wiley \& Sons, Inc.USA.
[16] University Program UP2 Education Kit User Guide, (2004) http://users.ece.gatech.edu/~hamblen/ALTERA/altera.htm.

N SUFFIX
PLASTIC CASE 646-06

ORDERING INFORMATION

SN54LSXXJ	Ceramic
SN74LSXXN	Plastic
SN74LSXXD	SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions		
			Min	Typ	Max				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		
V_{OH}	Output HIGH Voltage	54	2.5	3.5		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		
		74	2.7	3.5		V			
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$	
		74		0.35	0.5	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$		
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		
Ios	Short Circuit Current (Note 1)		-20		-100	mA	$V_{C C}=$ MAX		
${ }^{\text {ICC }}$	Power Supply Current Total, Output HIGH Total, Output LOW				2.4	mA	$V_{C C}=$ MAX		
					6.6				

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tPLH	Turn-Off Delay, Input to Output		9.0	15	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
tPHL	Turn-On Delay, Input to Output		10	15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

FAIRCHILD

SEMICロNDபСTロRTN

DM74LS138 • DM74LS139 Decoder/Demultiplexer

General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.
The DM74LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.
The DM74LS139 comprises two separate two-line-to-fourline decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

August 1986

Revised March 2000

Features

- Designed specifically for high speed:

Memory decoders
Data transmission systems
DM74LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception

- DM74LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
- Schottky clamped for high performance

■ Typical propagation delay (3 levels of logic)

$$
\text { DM74LS138 } 21 \mathrm{~ns}
$$

DM74LS139 21 ns

- Typical power dissipation

DM74LS138 32 mW
DM74LS139 34 mW

Ordering Code:

Order Number	Package Number	Package Description
DM74LS138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS138SJ	M16D	16 -Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS138N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74LS139M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS139SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS139N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Function Tables

DM74LS138												
Inputs					Outputs							
	Enable		Sele									
G1	G2 (Note 1)	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

DM74LS139

Inputs			Outputs			
Enable	Select					
G	B	A	Y0	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

Logic Diagrams

Absolute Maximum Ratings(Note 2)

Supply Voltage

Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS138 Electrical Characteristics

Symbol	Parameter	Conditions	Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{IH}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.36	mA
Ios	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 4)	-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 5)		6.3	10	mA

Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: I_{CC} is measured with all outputs enabled and OPEN.

DM74LS138 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	Levels of Delay	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	2		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	2		27		40	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	3		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	3		27		40	ns
${ }_{\text {tPLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	2		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	2		24		40	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	3		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	3		28		40	ns

Note 6: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 8: I_{CC} is measured with all outputs enabled and OPEN.
DM74LS139 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\overline{\text { tpLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output		27		40	ns
${ }_{\text {tpLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output		18		27	ns
${ }_{\text {t }}$	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output		24		40	ns

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

- Package Options Include Plastic "'Small Outline' Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input OR gates.

The SN5432, SN54LS32 and SN54S32 are characterized for operation over the full military range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN7432, SN74LS32 and SN74S32 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
function table (each gate)

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	
H	X	H
X	H	H
L	L	L

logic symboi ${ }^{\dagger}$

${ }^{1}$ This symbol is in accordance with ANSI;IEEE Std $91-1984$ and IEC Publication 617-12
Pin numbers shown are for D. J. N. or W packages.

SN5432, SN54LS32, SN54S32 . . J OR W PACKAGE SN7432 . . N PACKAGE
SN74LS32, SN74S32 . . D OR N PACKAGE (TOP VIEW)

SN54LS32, SN54S32 . . FK PACKAGE (TOP VIEW)

NC - No internal connection
logic diagram

positive logic

$$
Y=A+B \text { or } Y=\overline{\bar{A} \cdot \bar{B}}
$$

SN5432, SN54LS32, SN54S32,
SN7432, SN74LS32, SN74S32
QUADRUPLE 2-INPUT POSITIVE-OR GATES
schematics (each gate)

Resistor walues shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage. VCC \{see Note 1\}	
Input voltage: '32, 'S32	5.5 V
'LS32	7 V
Operating free-air temperature: S N54 ${ }^{\prime}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74'	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTE 1: Voltage values are with respect to network ground terminal.

SN5432, SN7432 QUADRUPLE 2.INPUT POSITIVE.OR GATES
recommended operating conditions

	SN5432			SN7432			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
$V_{C C}$ Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH Hgh-level input voltage	2			2			V
VIL Low-level imput voltage			0.8			0.8	V
1 OH High-level output current			-0.8			-0.8	mA
IOL Low-level output current			16			16	mA
$\mathrm{TA}_{\text {A }}$ Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under racommanded operating conditions.
\ddagger All typical values are at $\mathrm{V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time.
NOTE 2: One input at 4.5 V , all others at $G N D$.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO COUTPUTI	TEST CONDITIONS	MIN TYP	MAX	UNIT
TPLH	A OIB	Y	$R_{L}=400 \Omega$,	$C_{L}=15 \mathrm{pF}$	10	15
$T P H L$		$n s$				

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS32, SN74LS32

QUADRUPLE 2-INPUT POSITIVE.OR GATES
recommended operating conditions

	SN54LS32			SN74LS32			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
VCC Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH Hgh-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$ Low-levei input voitage			0.7			0.8	\checkmark
IOH High-level outpus current			-0.4			-0.4	mA
IOL Low-level output current			4			8	mA
TA Opertating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS \dagger			SN54LS32			SN74LS32			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	Max	
VIK	$V_{\text {CC }}=$ MIN,	$1_{1}=-18 \mathrm{~mA}$				- 1.5			- 1.5	V
VOH	$V_{C C}=\mathrm{MIN}$,	$V_{I H}=2 \mathrm{~V}$,	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.5	3.4		2.7	3.4		V
VOL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	$V_{I L}=$ MAX ,	${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25 0.4		0.250 .4			V
	$V_{C C}=$ MIN,	$V_{\text {IL }}=$ MAX .	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
11	$V_{C C}=M A X$,	$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	$m A$
${ }_{1} \mathrm{IH}$	$V_{C C}=M A X$,	$V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
1 IL	$V_{C C}=M A X$,	$v_{1}=0.4 \mathrm{~V}$			-0.4		-0.4			$m A$
Ios ξ	$V C C=M A X$			-20		-100	-20		- 100	mA
${ }^{1} \mathrm{CCH}$	$V_{C C}=M A X$.	See Note 2			3.1	6.2		3.1	6.2	mA
CCL	$V_{C C}=$ MAX .	$\mathrm{V}_{1}=0 \mathrm{~V}$			4.9	9.8		4.9	9.8	mA

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
S Not more than ane output should be shorted at a time and the duration of the short-Gircuit should not exceed one second.
NOTE 2: One irtput at 4.5 V , all others at GND.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (see note 3)

PARAMETER	FROM [INPUT]	TO IOUTPUTI	TEST	ONS	MIN TYP	MAX	UNIT
${ }^{\text {P }}$ L H	A or B	Y	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$,	$C_{L}=15 \mathrm{pF}$	14	22	$n 5$
tPHL					14	22	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.
recommended operating conditions

	SN54S32			SN74S32			UNIT
	MIN	NOM	MAX	MIIN	NOM	MAX	
$V_{\text {CC }}$ Supplv voltage	4.5	5	5.5	4.75	5	5.25	V
$V_{\text {IH }}$ High-level input voltage	2			2			V
$V_{\text {IL }}$ Low-eval input voltage			0.8			0.8	V
IOH High-level output current			- 1			-1	mA
IOL Low-level output current			20			20	m m
$\mathrm{T}_{\text {A }} \quad$ Operating fres-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS \dagger			SN54S32			SN74S32			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$V_{1 K}$	VCC $=\mathrm{MIN}$,	$I_{1}=-18 \mathrm{~mA}$				-1.2			-1.2	V
VOH	$\mathrm{VCC}^{=} \mathrm{MIN}$.	$\mathrm{V}_{1 H}=2 \mathrm{~V}$,	$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.5	3.4		2.7	3.4		V
VOL	$\mathrm{VCC}^{\text {e }}$ M $\mathrm{IIN}_{\text {r }}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.	$\mathrm{IOL}^{2}=20 \mathrm{~mA}$			0.5			0.5	V
1	$V_{C C}=$ MAX ,	$V_{1}=5.5 V$				1			1	mA
${ }_{1} \mathrm{I}$	$V_{C C}=$ MAX .	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				50			50	$\mu \mathrm{A}$
ILL	$V C C=M A X$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$				-2			-2	mA
los 5	$V_{C C}=\mathrm{MAX}$			-40		-100	-40		-100	mA
${ }^{1} \mathrm{CCH}$	$V_{C C}=\mathrm{MAX}$,	See Note 2			18	32		18	32	mA
ICCL	$V_{C C}=$ MAX	$V_{1}=0 \mathrm{~V}$			38	68		38	68	mA

f For conditions shown as MPN or MAX, use the appropriate value specified under recommandad operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\& Not mpre than one output should be shorted at a time and the duration of the short-circuit should not axcead one tecond.
NOTE 2: One input at 4.5 N , all others at GND.
switching characteristics, $V C C=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see note 3)

PARAMETER	FROM (INPUT)	то (OUTPUT)	TEST C	ONS	MIN TVP	MAX	UNIT
$\mathrm{tPLH}^{\text {L }}$	A or B	Y	$\mathrm{R}_{\mathrm{L}}=280 \Omega_{\text {r }}$	$C_{L}=15 \mathrm{pF}$	4	7	ns
$t \mathrm{PHL}$					4	7	ns
tPLH	A or ${ }^{\text {B }}$	Y	$\mathrm{R}_{\mathrm{L}}=280 \Omega$,	$C_{L}=50 \mathrm{pF}$	5		пs
tPHL					5		ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate Tl officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9557401QCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
5962-9557401QDA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
5962-9557401QDA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
JM38510/30501B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
JM38510/30501B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
JM38510/30501BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/30501BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/30501BDA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
JM38510/30501BDA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
JM38510/30501SCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/30501SCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/30501SDA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
JM38510/30501SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SN5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SN54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SN7432N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN7432N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN7432N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN7432N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN7432NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN7432NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS32D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBR	ACTIVE	SSOP	DB	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBR	ACTIVE	SSOP	DB	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBRE4	ACTIVE	SSOP	DB	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DG4	ACTIVE	SOIC	D	14	50	Green (RoHS \&	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
						no Sb/Br)		
SN74LS32DG4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DRG4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DRG4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS32J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS32N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS32N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS32N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS32N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS32NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS32NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS32NSR	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32NSR	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32NSRG4	ACTIVE	So	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32D	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74S32DE4	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32DE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74S32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32DRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74S32DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM

www.ti.com
PACKAGE OPTION ADDENDUM

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
SN74S32N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74S32N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74S32N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74S32N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74S32NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74S32NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74S32NSR	ACTIVE	SO	NS	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32NSR	ACTIVE	SO	NS	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74S32NSRE4	ACTIVE	So	NS	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32NSRE4	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SNJ5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ5432W	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
SNJ5432W	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
SNJ54LS32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54LS32W	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
SNJ54LS32W	ACTIVE	CFP	W	14	1	TBD	A42	N/A for Pkg Type
SNJ54S32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54S32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/A for Pkg Type
SNJ54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54S32W	ACTIVE	CFP	W	14	1	TBD	A42	N/A for Pkg Type
SNJ54S32W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS

compatible) as defined above.

Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AB.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers
Data Converters
DSP
Interface
Logic
Power Mgmt
Microcontrollers
Low Power Wireless

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

LM555

Timer

General Description

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200 mA or drive TTL circuits.

Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per ${ }^{\circ} \mathrm{C}$
- Normally on and normally off output
- Available in 8 -pin MSOP package

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator

Schematic Diagram

LM555
 Connection Diagram

Dual-In-Line, Small Outline and Molded Mini Small Outline Packages

Ordering Information

Package	Part Number	Package Marking	Media Transport	NSC Drawing
8-Pin SOIC	LM555CM	LM555CM	Rails	M08A
	LM555CMX	LM555CM	2.5 k Units Tape and Reel	
8-Pin MSOP	LM555CMM	Z55	1k Units Tape and Reel	MUA08A
	LM555CMMX	Z55	3.5 k Units Tape and Reel	
8-Pin MDIP	LM555CN	LM555CN	Rails	N08E

Absolute Maximum Ratings (Note 2)

 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.| Supply Voltage | +18 V |
| :--- | ---: |
| Power Dissipation (Note 3) | 1180 mW |
| LM555CM, LM555CN | 613 mW |
| LM555CMM | |
| Operating Temperature Ranges | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| LM555C | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Electrical Characteristics (Notes 1, 2)
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ to +15 V , unless othewise specified)

Parameter	Conditions	Limits			Units
		LM555C			
		Min	Typ	Max	
Supply Voltage		4.5		16	V
Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \text { (Low State) (Note 4) } \end{aligned}$		$\begin{gathered} 3 \\ 10 \end{gathered}$	$\begin{gathered} \hline 6 \\ 15 \end{gathered}$	mA
Timing Error, Monostable Initial Accuracy Drift with Temperature Accuracy over Temperature Drift with Supply	$\begin{aligned} & R_{A}=1 \mathrm{k} \text { to } 100 \mathrm{k} \Omega, \\ & C=0.1 \mu \mathrm{~F},(\text { Note } 5) \end{aligned}$		$\begin{gathered} 1 \\ 50 \\ \\ 1.5 \\ 0.1 \end{gathered}$		
Timing Error, Astable Initial Accuracy Drift with Temperature Accuracy over Temperature Drift with Supply	$\begin{aligned} & R_{A}, R_{B}=1 \mathrm{k} \text { to } 100 \mathrm{k} \Omega, \\ & C=0.1 \mu \mathrm{~F},(\text { Note } 5) \end{aligned}$		$\begin{gathered} 2.25 \\ 150 \\ \\ 3.0 \\ 0.30 \end{gathered}$		
Threshold Voltage			0.667		$\mathrm{x} \mathrm{V}_{\mathrm{cc}}$
Trigger Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 5 \\ 1.67 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Trigger Current			0.5	0.9	$\mu \mathrm{A}$
Reset Voltage		0.4	0.5	1	V
Reset Current			0.1	0.4	mA
Threshold Current	(Note 6)		0.1	0.25	$\mu \mathrm{A}$
Control Voltage Level	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 9 \\ 2.6 \end{gathered}$	$\begin{gathered} \hline 10 \\ 3.33 \end{gathered}$	$\begin{gathered} \hline 11 \\ 4 \end{gathered}$	V
Pin 7 Leakage Output High			1	100	nA
Pin 7 Sat (Note 7) Output Low Output Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{7}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{7}=4.5 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 180 \\ 80 \end{gathered}$	200	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

Electrical Characteristics (Notes 1, 2) (Continued)
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ to +15 V , unless othewise specified)

Parameter	Conditions	Limits			Units
		LM555C			
		Min	Typ	Max	
Output Voltage Drop (Low)	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$				
	$\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$		0.1	0.25	V
	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$		0.4	0.75	V
	$\mathrm{I}_{\text {SINK }}=100 \mathrm{~mA}$		2	2.5	V
	$\mathrm{I}_{\text {SINK }}=200 \mathrm{~mA}$		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$				
	$\mathrm{I}_{\text {SINK }}=8 \mathrm{~mA}$				V
	$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$		0.25	0.35	V
Output Voltage Drop (High)	$\mathrm{I}_{\text {SOURCE }}=200 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=15 \mathrm{~V}$		12.5		V
	$\mathrm{I}_{\text {SOURCE }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=15 \mathrm{~V}$	12.75	13.3		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.75	3.3		V
Rise Time of Output			100		ns
Fall Time of Output			100		ns

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For operating at elevated temperatures the device must be derated above $25^{\circ} \mathrm{C}$ based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $106^{\circ} \mathrm{C} / \mathrm{W}$ (DIP), $170^{\circ} \mathrm{C} / \mathrm{W}$ (S0-8), and $204^{\circ} \mathrm{C} / \mathrm{W}$ (MSOP) junction to ambient.

Note 4: Supply current when output high typically 1 mA less at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 5: Tested at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.
Note 6: This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation. The maximum total $\left(R_{A}+R_{B}\right)$ is $20 \mathrm{M} \Omega$.
Note 7: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.
Note 8: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.

Typical Performance Characteristics
Minimuim Pulse Width Required for Triggering

00785104

00785120

00785122

Supply Current vs. Supply Voltage

SUPPLY VOLTAGE (V)

Low Output Voltage vs. Output Sink Current

00785124

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE (X V_{cc})
00785125

Applications Information

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (Figure 1). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than $1 / 3 \mathrm{~V}_{\mathrm{C}}$ to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.

FIGURE 1. Monostable

The voltage across the capacitor then increases exponentially for a period of $t=1.1 \mathrm{R}_{\mathrm{A}} \mathrm{C}$, at the end of which time the voltage equals $2 / 3 \mathrm{~V}_{\mathrm{cc}}$. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply.

00785105

00785106
$V_{C C}=5 \mathrm{~V}$
TIME $=0.1 \mathrm{~ms} /$ DIV .
$R_{A}=9.1 \mathrm{k} \Omega$
Top Trace: Input 5V/Div. Middle Trace: Output 5V/Div Bottom Trace: Capacitor Voltage 2V/Div.
$C=0.01 \mu \mathrm{~F}$

FIGURE 2. Monostable Waveforms
During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10μ s before the end of the timing interval. However the circuit can be reset
during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.
When the reset function is not in use, it is recommended that it be connected to V_{Cc} to avoid any possibility of false triggering.
Figure 3 is a nomograph for easy determination of R, C values for various time delays.
NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle.

FIGURE 3. Time Delay

ASTABLE OPERATION

If the circuit is connected as shown in Figure 4 (pins 2 and 6 connected) it will trigger itself and free run as multivibrator. The external capacitor charges through $R_{A}+R_{B}$ and discharges through R_{B}. Thus the duty cycle may be precisely set by the ratio of these two resistors.

00785108
FIGURE 4. Astable
In this mode of operation, the capacitor charges and discharges between $1 / 3 \mathrm{~V}_{\mathrm{CC}}$ and $2 / 3 \mathrm{~V}_{\mathrm{Cc}}$. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

Applications Information
(Continued)
Figure 5 shows the waveforms generated in this mode of operation.

FIGURE 5. Astable Waveforms
The charge time (output high) is given by:

$$
t_{1}=0.693\left(R_{A}+R_{B}\right) C
$$

And the discharge time (output low) by:

$$
\mathrm{t}_{2}=0.693\left(\mathrm{R}_{\mathrm{B}}\right) \mathrm{C}
$$

Thus the total period is:

$$
\mathrm{T}=\mathrm{t}_{1}+\mathrm{t}_{2}=0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}
$$

The frequency of oscillation is:

$$
f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

Figure 6 may be used for quick determination of these RC values.
The duty cycle is:

$$
D=\frac{R_{B}}{R_{A}+2 R_{B}}
$$

00785110

FREQUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 7 shows the waveforms generated in a divide by three circuit.

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} & \text { Top Trace: Input 4V/Div. } \\
\mathrm{TIME}=20 \mu \mathrm{~s} / \mathrm{DIV} . & \text { Middle Trace: Output 2V/Div. } \\
\mathrm{R}_{\mathrm{A}}=9.1 \mathrm{k} \Omega & \text { Bottom Trace: Capacitor 2V/Div. } \\
\mathrm{C}=0.01 \mu \mathrm{~F} &
\end{array}
$$

FIGURE 7. Frequency Divider

PULSE WIDTH MODULATOR

When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5 . Figure 8 shows the circuit, and in Figure 9 are some waveform examples.

00785112
FIGURE 8. Pulse Width Modulator

00785113
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Top Trace: Modulation 1V/Div.
TIME $=0.2 \mathrm{~ms} /$ DIV. Bottom Trace: Output Voltage 2V/Div
$R_{A}=9.1 \mathrm{k} \Omega$
$\mathrm{C}=0.01 \mu \mathrm{~F}$

FIGURE 9. Pulse Width Modulator

PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in Figure 10, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. Figure 11 shows the waveforms generated for a triangle wave modulation signal.

FIGURE 10. Pulse Position Modulator

00785115

$$
\begin{array}{lc}
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} & \text { Top Trace: Modulation Input 1V/Div. } \\
\text { TIME }=0.1 \mathrm{~ms} / \text { DIV. } & \text { Bottom Trace: Output 2V/Div. } \\
\mathrm{R}_{\mathrm{A}}=3.9 \mathrm{k} \Omega & \\
\mathrm{R}_{\mathrm{B}}=3 \mathrm{k} \Omega & \\
\mathrm{C}=0.01 \mu \mathrm{~F} &
\end{array}
$$

FIGURE 11. Pulse Position Modulator

LINEAR RAMP

When the pullup resistor, R_{A}, in the monostable circuit is replaced by a constant current source, a linear ramp is generated. Figure 12 shows a circuit configuration that will perform this function.

FIGURE 12.
Figure 13 shows waveforms generated by the linear ramp. The time interval is given by:

$$
\begin{gathered}
T=\frac{2 / 3 V_{C C} R_{E}\left(R_{1}+R_{2}\right) C}{R_{1} V_{C C}-V_{B E}\left(R_{1}+R_{2}\right)} \\
V_{B E} \cong 0.6 \mathrm{~V} \\
V_{B E} \simeq 0.6 \mathrm{~V}
\end{gathered}
$$

Applications Information
(Continued)

$$
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \quad \text { Top Trace: Input 3V/Div. }
$$

TIME $=20 \mu \mathrm{~s} /$ DIV. Middle Trace: Output 5V/Div.
$R_{1}=47 \mathrm{k} \Omega \quad$ Bottom Trace: Capacitor Voltage 1V/Div.
$\mathrm{R}_{2}=100 \mathrm{k} \Omega$
$R_{E}=2.7 \mathrm{k} \Omega$
$\mathrm{C}=0.01 \mu \mathrm{~F}$

FIGURE 13. Linear Ramp

50\% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors R_{A} and R_{B} may be connected as in Figure 14. The time period for the output high is the same as previous, $t_{1}=0.693 R_{A} C$. For the output low it is $\mathrm{t}_{2}=$

$$
\left[\left(R_{A} R_{B}\right) /\left(R_{A}+R_{B}\right)\right] C \ln \left[\frac{R_{B}-2 R_{A}}{2 R_{B}-R_{A}}\right]
$$

Thus the frequency of oscillation is

$$
f=\frac{1}{t_{1}+t_{2}}
$$

00785118

FIGURE 14. 50\% Duty Cycle Oscillator

Note that this circuit will not oscillate if R_{B} is greater than $1 / 2$ R_{A} because the junction of R_{A} and R_{B} cannot bring pin 2 down to $1 / 3 V_{c c}$ and trigger the lower comparator.

ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is $0.1 \mu \mathrm{~F}$ in parallel with $1 \mu \mathrm{~F}$ electrolytic.
Lower comparator storage time can be as long as $10 \mu \mathrm{~s}$ when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to $10 \mu \mathrm{~s}$ minimum.
Delay time reset to output is $0.47 \mu \mathrm{~s}$ typical. Minimum reset pulse width must be $0.3 \mu \mathrm{~s}$, typical.
Pin 7 current switches within 30 ns of the output (pin 3) voltage.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green.
Lead free products are RoHS compliant.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support@ nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
www.national.com	Français Tel: +33 (0) 141918790		

QUAD 2-INPUT AND GATE

SN54/74LS09

QUAD 2-INPUT AND GATE
LOW POWER SCHOTTKY

*OPEN COLLECTOR OUTPUTS

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
$\mathrm{~V}_{\mathrm{OH}}$	Output Voltage - High	54,74			5.5	V
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions		
			Min	Typ	Max				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for	
V_{IL}	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	18 mA	
${ }^{\mathrm{OH}}$	Output HIGH Current	54, 74			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$		
V_{OL}	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { MIN, } \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL or or }} \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$	
		74		0.35	0.5	V	$\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}$		
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		
${ }^{\text {ICC }}$	Power Supply Current Total, Output HIGH Total, Output LOW				4.8	mA	$V_{C C}=$ MAX		
					8.8				

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tPLH	Turn-Off Delay, Input to Output		20	35	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
tPHL	Turn-On Delay, Input to Output		17	35	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$

Absolute Maximum Ratings(Note 1)
Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $\mathrm{V}_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	
Standard Output	-0.5 V to V_{CC}
3-STATE Output	-0.5 V to +5.5 V

ATE Output
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{l}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{V} \text { OL }}$	Output LOW Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			0.5	V	Min	$\mathrm{l} \mathrm{OL}=20 \mathrm{~mA}$
$\overline{I_{\mathrm{H}}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\overline{I C E X}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All other pins grounded
${ }_{\text {OD }}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All other pins grounded
ILI	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {CCH }}$	Power Supply Current		4.1	6.2	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CLL }}$	Power Supply Current		6.5	9.7	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.0	4.2	5.6	2.5	7.5	3.0	6.6	
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n}, C_{n} to O_{n}	2.5	4.1	5.5	2.0	7.5	2.5	6.5	ns

Physical Dimensions inches（millimeters）unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

- Qualification in Accordance With AEC-Q100 \dagger
- Qualified for Automotive Applications
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 20- $\mu \mathrm{A}$ Max ICC
- ± 4-mA Output Drive at 5 V
- Low Input Current of $1 \mu \mathrm{~A}$ Max
- True Logic
\dagger Contact factory for details. Q100 qualification data available on request.

description/ordering information

This device contains four independent 2-input exclusive-OR gates. They perform the Boolean function $Y=A \oplus B$ or $Y=\bar{A} B+A \bar{B}$ in positive logic.
A common application is as a true/complement element. If one of the inputs is low, the other input is reproduced in true form at the output. If one of the inputs is high, the signal on the other input is reproduced inverted at the output.

ORDERING INFORMATION

T_{A}	PACKAGE \ddagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - D	Reel of 2500	SN74HC86IDRQ1	HC86I
	TSSOP - PW	Reel of 2000	SN74HC86IPWRQ1	HC86I
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SOIC - D	Reel of 2500	SN74HC86QDRQ1	HC86Q
	TSSOP - PW	Reel of 2000	SN74HC86QPWRQ1	HC86Q

\ddagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each gate)	
INPUTS OUTPUT A B Y L L L L H H H L H H H L	

QUADRUPLE 2-INPUT EXCLUSIVE-OR GATE

SCLS587B - JUNE 2004 - SEPTEMBER 2004

exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

Exclusive OR

These are five equivalent exclusive-OR symbols valid for an 'HC86 gate in positive logic; negation may be shown at any two ports.

Logic Identity Element

The output is active (low) if all inputs stand at the same logic level (i.e., $A=B$).

Even-Parity Element

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

Odd-Parity Element

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	$\begin{gathered} \hline \text { UNIT } \\ \hline V \end{gathered}$
V_{CC}	Supply voltage		2	5	6	
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8	
V_{1}	Input voltage		0		V_{CC}	V
V_{O}			0		V_{CC}	V
$\Delta t / \Delta v$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400	
TA	Operating free-air temperature		-40		125	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{Cc}	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \mathrm{TO} 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \mathrm{TO} 85^{\circ} \mathrm{C} \end{gathered}$	UNIT	
			MIN	MAX	MIN MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}=-20 \mu \mathrm{~A}$		2 V	1.9		1.9	V
			4.5 V	4.4		4.4		
			6 V	5.9		5.9		
		$\mathrm{I}^{\mathrm{OH}}=-4 \mathrm{~mA}$	4.5 V	3.7		3.84		
		$\mathrm{IOH}=-5.2 \mathrm{~mA}$	6 V	5.2		5.34		
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	${ }^{\prime} \mathrm{OL}=20 \mu \mathrm{~A}$	2 V		0.1	0.1	V	
			4.5 V		0.1	0.1		
			6 V		0.1	0.1		
		$\mathrm{I} \mathrm{OL}=4 \mathrm{~mA}$	4.5 V		0.4	0.33		
		$\mathrm{IOL}=5.2 \mathrm{~mA}$	6 V		0.4	0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0		6 V		± 1000	± 1000	nA	
${ }^{\text {ICC }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0 ,	$\mathrm{I}=0$	6 V		40	20	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		10	10	pF	

SN74HC86-Q1
 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATE

SCLS587B - JUNE 2004 - SEPTEMBER 2004
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Vcc	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \mathrm{TO} 125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \mathrm{TO} 85^{\circ} \mathrm{C} \end{gathered}$	UNIT
				MIN MAX	MIN MAX	
$t_{\text {tpd }}$	A or B	Y	2 V	150	125	ns
			4.5 V	30	25	
			6 V	25	21	
t_{t}		Y	2 V	110	95	ns
			4.5 V	22	19	
			6 V	19	16	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per gate	No load	35	pF

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas instruments Quality and Reliability

description

These devices contain two independent D-type positive-edge-triggered flip-flops. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

The SN54' family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74' family is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

InPUTS				OUTPUTS	
$\overline{\text { PRE }}$	$\overline{\text { CLR }}$	CLK	D	a	$\overline{\mathrm{a}}$
L	H	x	\times	H	L
H	L	x	x	L	H
L	L	x	\times	H^{\dagger}	H^{\dagger}
H	H	1	H	H	L
H	H	1	L	L	H
H	H	L	\times	Q_{0}	$\overline{0}_{0}$

\dagger The output levels in this configuration are not guaranteed to meet the minimum levels in V_{OH} if the lows at preset and clear are near $V_{1 L}$ maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.
logic symbol ${ }^{\ddagger}$

[^0]```
SN5474 . . . J PACKAGE
SN54LS74A, SN54S74 . . J OR W PACKAGE
SN7474 . . N PACKAGE
SN74LS74A, SN74S74 . . D OR N PACKAGE
(TOP VIEW)
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{r}
1 \overline{\mathrm{CLR}}[\sqrt{1} \\
10\left[\square_{2}\right.
\end{array}
\] & \(\mathrm{V}_{14} \mathrm{p} \mathrm{vcc}\) \\
\hline \(1 \mathrm{CLK} \mathrm{O}^{3}\) & 12 P 20 \\
\hline 1 PRED \(_{4}\) & 11 Paclk \\
\hline \(10{ }^{5}\) & \(10 \bigcirc 2\) PRE \\
\hline 10¢ \({ }^{\text {c }}\) & \({ }_{9} 20\) \\
\hline GND[7 & \(8{ }^{\text {® }}\) - \\
\hline
\end{tabular}
SN5474 . . . W PACKAGE (TOP VIEW)
```



SN54LS74A, SN54S74 . . FK PACKAGE (TOP VIEW)


NC - No internal connection
logic diagram (positive logic)

schematics of inputs and outputs
74

'S74

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, $\mathrm{V}_{\text {CC }}(\mathbf{s e e}$ Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V |  |
| :---: | :---: |
| Input voltage: '74, 'S74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V |  |
| 'LS74A | 7 V |
| Operating free-air temperature range: SN54' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |  |
| SN74' | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Storage temperature range | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

NOTE 1: Voltage values are with respect to network ground terminal.

## DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS ${ }^{\dagger}$ |  |  | SN5474 |  |  | SN7474 |  |  | UNIT | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | MIN | TYP $\ddagger$ | MAX | MIN | TYP | MAX |  |
| $V_{\text {IK }}$ |  |  |  |  | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, | $\mathrm{I}_{1}=-12 \mathrm{~mA}$ |  |  |  | - 1.5 |  |  | $-1.5$ | V |
| VOH |  | $\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \end{aligned}$ | $V_{1 H}=2 \mathrm{~V},$ | $V_{I L}=0.8 \mathrm{~V}$ | 2.4 | 3.4 |  | 2.4 | 3.4 |  | V |
| VOL |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}^{2}=16 \mathrm{~mA} \end{aligned}$ | $V_{I H}=2 \mathrm{~V},$ | $V_{I L}=0.8 \mathrm{~V}$ |  | 0.2 | 0.4 |  | 0.2 | 0.4 | V |
| 11 |  | $V_{C C}=$ MAX, | $V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 |  |  | 1 | mA |
| $1 / \mathrm{H}$ | D | $V_{C C}=$ MAX, $\quad V_{1}=2.4$ |  |  |  |  | 40 |  |  | 40 | $\mu \mathrm{A}$ |
|  | CLR |  |  |  |  |  | 120 |  |  | 120 |  |
|  | All Other |  |  |  |  |  | 80 |  |  | 80 |  |
| IIL | D | $V_{C C}=$ MAX, | $\mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  |  | - 1.6 |  |  | $-1.6$ | mA |
|  | $\overline{\text { PRE }}{ }^{\text {¢ }}$ |  |  |  |  |  | $-1.6$ |  |  | $-1.6$ |  |
|  | $\overline{C L R}{ }^{\text {¢ }}$ |  |  |  |  |  | $-3.2$ |  |  | $-3.2$ |  |
|  | CLK |  |  |  |  |  | $-3.2$ |  |  | $-3.2$ |  |
| ${ }^{\text {Ios }}$ |  | $V_{C C}=$ MAX |  |  | -20 |  | - 57 | $-18$ |  | -57 | mA |
| ${ }^{1} \mathrm{CC}{ }^{\prime \prime}$ |  | $V_{C C}=$ MAX, | See Note 2 |  |  | 8.5 | 15 |  | 8.5 | 15 | mA |

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\S}$ Clear is tested with preset high and preset is tested with clear high.
INot more than one output should be shown at a time.
\#Average per flip-flop.
NOTE 2: With all outputs open, ${ }^{\prime} \mathrm{CC}$ is measured with the Q and $\overline{\mathrm{Q}}$ outputs high in turn. At the time of measurement, the clock input is grounded.
switching charateristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see note 3)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | TEST CONDITIONS |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{\text {max }}$ |  |  | $R_{L}=400 \Omega, \quad C_{L}=15 \mathrm{pF}$ |  | 15 | 25 |  | MHz |
| ${ }^{\text {tPLH }}$ | $\overline{\text { PRE or }} \overline{\text { CLR }}$ | Q or $\overline{\mathrm{Q}}$ |  |  |  |  | 25 | ns |
| ${ }^{\text {tPHL }}$ |  |  |  |  |  |  | 40 | ns |
| ${ }^{\text {tPLH }}$ | CLK | $Q$ or $\bar{Q}$ |  |  |  | 14 | 25 | ns |
| TPHL |  |  |  |  |  | 20 | 40 | ns |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.
recommended operating conditions

|  |  |  |  | 54LS7 |  |  | N74L | 74A |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | NOM | MAX | MIN | NOM | MAX |  |
| $V_{\text {cc }}$ | Supply voltage |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $V_{\text {IH }}$ | High-level input voltage |  | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{11}$ | Low-level input voltage |  |  |  | 0.7 |  |  | 0.8 | $\checkmark$ |
| ${ }^{1} \mathrm{OH}$ | High-level output current |  |  |  | $-0.4$ |  |  | -0.4 | mA |
| 1 OL | Low-level output current |  |  |  | 4 |  |  | 8 | mA |
| ${ }^{\text {f }}$ clock | Clock frequency |  | 0 |  | 25 | 0 |  | 25 | MHz |
|  |  | CLK high | 25 |  |  | 25 |  |  | ns |
| ${ }^{\text {w }}$ w | Pulse duration | PRE or CLR Iow | 25 |  |  | 25 |  |  | s |
|  |  | High-level data | 20 |  |  | 20 |  |  | ns |
| ${ }_{\text {su }}$ | tup time-before CLK | Low-level data | 20 |  |  | 20 |  |  |  |
| th | Hold time-data after CLK $\dagger$ |  | 5 |  |  | 5 |  |  | ns |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS ${ }^{\dagger}$ |  |  | SN54LS74A |  |  | SN74LS74A |  |  | UNIT | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | MIN | TYP $\ddagger$ | MAX | MIN | TYP $\ddagger$ | MAX |  |
| $V_{1}$ |  |  |  |  | $V_{C C}=$ MIN, | $\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  |  | -1.5 |  |  | -1.5 | $\checkmark$ |
| $\mathrm{V}_{\mathrm{OH}}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \end{aligned}$ | $V_{I H}=2 V,$ | $V_{I L}=\text { MAX } .$ | 2.5 | 3.4 |  | 2.7 | 3.4 |  | V |
| $\mathrm{V}_{\text {OL }}$ |  | $\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \end{aligned}$ | $V_{I L}=\text { MAX }$ | $V_{I H}=2 \mathrm{~V} .$ |  | 0.25 | 0.4 |  | 0.25 | 0.4 | v |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}^{\prime}=8 \mathrm{~mA} \end{aligned}$ | $V_{\text {IL }}=$ MAX, | $V_{I H}=2 \mathrm{~V} .$ |  |  |  |  | 0.35 | 0.5 |  |
|  | D or CLK | $v_{C C}=$ MAX | $V_{1}=7 \mathrm{~V}$ |  |  |  | 0.1 |  |  | 0.1 | mA |
| 1 | $\overline{\mathrm{CLR}}$ or $\overline{\mathrm{P} \overline{R E}}$ |  |  |  |  |  | 0.2 |  |  | 0.2 |  |
|  | D or CLK | $V_{C C}=M A X$. | $V_{1}=2.7 \mathrm{~V}$ |  |  |  | 20 |  |  | 20 | $\mu \mathrm{A}$ |
| 11 | $\overline{\mathrm{CLR}}$ or $\overline{\mathrm{PRE}}$ |  |  |  |  |  | 40 |  |  | 40 |  |
| $1 / 2$ | D or CLK | $V_{C C}=$ MAX, | $\mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  |  | -0.4 |  |  | -0.4 | mA |
|  | $\overline{\mathrm{CLR}}$ or PRE |  |  |  |  |  | -0.8 |  |  | -0.8 |  |
| los§ |  | $V_{C C}=$ MAX, | See Note 4 |  | -20 |  | -100 | -20 |  | -100 | mA |
|  |  | $V_{C C}=$ MAX , | See Note 2 |  |  | 4 | 8 |  | 4 | 8 | mA |

$\dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\ddagger$ All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 2: With all outputs open, ICC is measured with the $Q$ and $\bar{Q}$ outputs high in turn. At the time of measurement, the clock input is grounded.
NOTE 4: For certain devices where state commutation can be caused by sharting an output to ground, an equivalent test may be performed with $V_{O}=2.25 \mathrm{~V}$ and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see note 3 )

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | TEST | ITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{\text {max }}$ |  |  | $R_{L}=2 \mathrm{k} \Omega, \quad C_{L}=15 \mathrm{pF}$ |  | 25 | 33 |  | M Mz |
| PPLH | $\overline{\text { CLR }}, \overline{\text { PRE }}$ or CLK | Q or $\overline{\mathbf{Q}}$ |  |  |  | 13 | 25 | ns |
| ${ }^{\text {P PHL }}$ |  |  |  |  |  | 25 | 40 | ns |

Note 3: Load circuits and voltage waveforms are shown in Section 1.
recommended operating conditions

|  |  | SN54S74 |  |  | SN74S74 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | NOM | MaX | MIN | NOM | MAX |  |
| $V_{\text {CC }}$ Supply voltage |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | $v$ |
| High-level input voltage |  | 2 |  |  | 2 |  |  | $v$ |
| Low-level input voltage |  |  |  | 0.8 |  |  | 0.8 | $v$ |
| ${ }^{1} \mathrm{OH}$ High-level output current |  |  |  | -1 |  |  | - 1 | mA |
| Low-level output current |  |  |  | 20 |  |  | 20 | mA |
| ${ }^{\text {tw }}$ w Pulse duration | CLK high | 6 |  |  | 6 |  |  | ns |
|  | CLK low | 7.3 |  |  | 7.3 |  |  |  |
|  | $\overline{C L R}$ or PRE low | 7 |  |  | 7 |  |  |  |
| Setup time, before CLK $\dagger$ | High-level data | 3 |  |  | 3 |  |  | ns |
|  | Low-level data | 3 |  |  | 3 |  |  |  |
| Input hold time - data after CLK $\dagger$ |  | 2 |  |  | 2 |  |  | ns |
| $\mathrm{T}_{\mathrm{A}}$ Operating free-air temperature |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS ${ }^{+}$ |  |  | SN54S74 |  |  | SN74S74 |  |  | UNIT | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | MIN | TYP $\ddagger$ | MAX | MIN | TYP ${ }^{\text {\% }}$ | MAX |  |
| $V_{\text {IK }}$ |  |  |  |  | $V_{C C}=$ MIN | $I_{1}=-18 \mathrm{~mA}$ |  |  |  | - 1.2 |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$ | $V_{I H}=2 V$ | $V_{I L}=0.8 \mathrm{~V}$ | 2.5 | 3.4 |  | 2.7 | 3.4 |  | V |
| VOL |  | $\begin{aligned} & V_{C C}=M I N, \\ & I_{O L}=20 \mathrm{~mA} \end{aligned}$ | $V_{I H}=2 V$ | $V_{I L}=0.8 \mathrm{~V}$ |  |  | 0.5 |  |  | 0.5 | V |
| $1 /$ |  | $V_{C C}=$ MAX | $V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 |  |  | 1 | mA |
| IH | D | $V_{C C}=$ MAX, | $V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 |  |  | 50 | $\mu \mathrm{A}$ |
|  | CLR |  |  |  |  |  | 150 |  |  | 150 |  |
|  | PRE or CLK |  |  |  |  |  | 100 |  |  | 100 |  |
| $I_{1 L}$ | D | $V_{C C}=$ MAX | $V_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 |  |  | -2 | mA |
|  | $\overline{\text { CLR }} 1$ |  |  |  |  |  | -6 |  |  | -6 |  |
|  | $\overline{\text { PRE }}$ ! |  |  |  |  |  | -4 |  |  | -4 |  |
|  | CLK |  |  |  |  |  | -4 |  |  | -4 |  |
| ${ }^{1} \mathrm{OS}^{5}$ |  | $V_{C C}=M A X$ |  |  | -40 |  | $-100$ | $-40$ |  | $-100$ | mA |
| 'cc' |  | $V_{C C}=$ MAX , | See Note 2 |  |  | 15 | 25 |  | 15 | 25 | mA |

$\dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

IClear is tested with preset high and preset is tested with clear high.
\#Average per flip-flop.
NOTE 2: With all outputs open. ${ }^{\prime} \mathrm{CC}$ is measured with the O and $\overline{\mathrm{O}}$ outputs high in turn. At the time of measurement, the clock input is grounded.
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see note 3)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | TEST CONDITIONS |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{\text {max }}$ |  |  | $R_{L}=280 \Omega, \quad C_{L}=15 \mathrm{pF}$ |  | 75 | 110 |  | MHz |
| tPLH | $\overline{\text { PRE or CLR }}$ | Q or $\overline{\mathrm{a}}$ |  |  |  | 4 | 6 | ns |
| ${ }^{\text {tPHL }}$ | $\overline{\text { PRE }}$ or $\overline{\text { CLR }}$ (CLK high) | $\overline{\mathrm{Q}}$ or O |  |  |  | 9 | 13.5 | ns |
|  | $\overline{\overline{P R E}}$ or $\overline{\text { CLR (CLK low) }}$ |  |  |  |  | 5 | 8 |  |
| ${ }^{\text {t PLH }}$ | CLK | Q or $\overline{\mathrm{Q}}$ |  |  |  | 6 | 9 | ns |
| ${ }^{\text {tPHL }}$ |  |  |  |  |  | 6 | 9 | ns |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

## PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package Type | Package Drawing | Pins | Package Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JM38510/00205BCA | OBSOLETE | CDIP | $J$ | 14 |  | TBD | Call TI | Call TI |
| JM38510/00205BDA | OBSOLETE | CFP | W | 14 |  | TBD | Call TI | Call TI |
| JM38510/00205BDA | OBSOLETE | CFP | W | 14 |  | TBD | Call TI | Call TI |
| JM38510/07101BCA | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/07101BCA | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/07101BDA | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/07101BDA | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102B2A | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102B2A | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102BCA | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102BCA | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102BDA | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102BDA | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102SCA | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102SCA | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102SDA | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| JM38510/30102SDA | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SN5474J | OBSOLETE | CDIP | $\checkmark$ | 14 |  | TBD | Call TI | Call TI |
| SN5474J | OBSOLETE | CDIP | J | 14 |  | TBD | Call TI | Call TI |
| SN54LS74AJ | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SN54LS74AJ | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SN54S74J | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SN54S74J | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SN7474DR | OBSOLETE | SOIC | D | 14 |  | TBD | Call TI | Call TI |
| SN7474DR | OBSOLETE | SOIC | D | 14 |  | TBD | Call TI | Call TI |
| SN7474N | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |
| SN7474N | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |
| SN7474N3 | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |
| SN7474N3 | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |
| SN74LS74AD | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74AD | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADBR | ACTIVE | SSOP | DB | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADBR | ACTIVE | SSOP | DB | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADBRE4 | ACTIVE | SSOP | DB | 14 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADBRE4 | ACTIVE | SSOP | DB | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADE4 | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADE4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS \& | CU NIPDAU | Level-1-260C-UNLIM |

INSTRUMENTS
PACKAGE OPTION ADDENDUM
www.ti.com
17-Oct-2005

| Orderable Device | Status ${ }^{(1)}$ | Package Type | Package Drawing |  | Package Qty | $\text { Eco Plan }{ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | no Sb/Br) |  |  |
| SN74LS74ADR | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADRE4 | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ADRE4 | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74AJ | OBSOLETE | CDIP | J | 14 |  | TBD | Call TI | Call TI |
| SN74LS74AJ | OBSOLETE | CDIP | J | 14 |  | TBD | Call TI | Call TI |
| SN74LS74AN | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74LS74AN | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74LS74AN3 | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |
| SN74LS74AN3 | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |
| SN74LS74ANE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74LS74ANE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74LS74ANSR | ACTIVE | SO | NS | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ANSR | ACTIVE | SO | NS | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ANSRG4 | ACTIVE | SO | NS | 14 | 2000 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74LS74ANSRG4 | ACTIVE | SO | NS | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74D | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74D | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74DE4 | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74DE4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74DR | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74DR | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74DRE4 | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74DRE4 | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74N | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74S74N | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74S74N3 | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |

www.ti.com

| Orderable Device | Status ${ }^{(1)}$ | Package Type | Package Drawing |  | Package Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74S74N3 | OBSOLETE | PDIP | N | 14 |  | TBD | Call TI | Call TI |
| SN74S74NE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74S74NE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74S74NSR | ACTIVE | SO | NS | 14 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74NSR | ACTIVE | SO | NS | 14 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74NSRE4 | ACTIVE | SO | NS | 14 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74S74NSRE4 | ACTIVE | SO | NS | 14 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |
| SNJ5474J | OBSOLETE | CDIP | J | 14 |  | TBD | Call TI | Call TI |
| SNJ5474J | OBSOLETE | CDIP | J | 14 |  | TBD | Call TI | Call TI |
| SNJ5474W | OBSOLETE | CFP | W | 14 |  | TBD | Call TI | Call TI |
| SNJ5474W | OBSOLETE | CFP | W | 14 |  | TBD | Call TI | Call TI |
| SNJ54LS74AFK | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54LS74AFK | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54LS74AJ | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54LS74AJ | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54LS74AW | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54LS74AW | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54S74FK | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54S74FK | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54S74J | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54S74J | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54S74W | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SNJ54S74W | ACTIVE | CFP | W | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$ ): TI defines "Green" to mean Pb -Free (RoHS compatible), and free of $\mathrm{Bromine}(\mathrm{Br}$ ) and Antimony ( Sb ) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


| DIM PINS ** | 14 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.300 <br> $(7,62)$ <br> BSC |
| B MAX | 0.785 <br> $(19,94)$ | .840 <br> $(21,34)$ | 0.960 <br> $(24,38)$ | 1.060 <br> $(26,92)$ |
| B MIN | - | - | - | - |
| C MAX | 0.300 <br> $(7,62)$ | 0.300 <br> $(7,62)$ | 0.310 <br> $(7,87)$ | 0.300 <br> $(7,62)$ |
| C MIN | 0.245 <br> $(6,22)$ | 0.245 <br> $(6,22)$ | 0.220 <br> $(5,59)$ | 0.245 <br> $(6,22)$ |



NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

## W (R-GDFP-F14)



NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

## PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

NS (R-PDSO-G**)
14-PINS SHOWN


| DIM PINS ** | 14 | 16 | 20 | 24 |
| :---: | :---: | :---: | :---: | :---: |
| A MAX | 10,50 | 10,50 | 12,90 | 15,30 |
| A MIN | 9,90 | 9,90 | 12,30 | 14,70 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


| DIM PINS ** | $\mathbf{1 4}$ | $\mathbf{1 6}$ | $\mathbf{2 0}$ | $\mathbf{2 4}$ | $\mathbf{2 8}$ | $\mathbf{3 0}$ | $\mathbf{3 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A MAX | 6,50 | 6,50 | 7,50 | 8,50 | 10,50 | 10,50 | 12,90 |
| A MIN | 5,90 | 5,90 | 6,90 | 7,90 | 9,90 | 9,90 | 12,30 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

## Products

## Applications

| Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio |
| :--- | :--- | :--- | :--- |
| Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive |
| DSP | dsp.ti.com | Broadband | www.ti.com/broadband |
| Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol |
| Logic | logic.ti.com | Military | www.ti.com/military |
| Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security |
|  |  | Telephony | www.ti.com/telephony |
|  |  | Video \& Imaging | www.ti.com/video |
|  |  | Wireless | www.ti.com/wireless |

Mailing Address: Texas Instruments<br>Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Appendix I: The Complete Program

## State Decoder

module state_decoder (S0,S1,S2,S01,S02,S03,S04,S05,S06,S07,S08); //Declaration port input and output
input S0,S1,S2; // State decoder input signals
output S01,S02,S03,S04,S05,S06,S07,S08; // State decoder outputs

$$
\begin{aligned}
& \text { assign S01 = ~S2 \& ~S1 \& ~S0; // State output1 } \\
& \text { assign S02 = ~S2 \& ~S1 \& S0; // State output2 } \\
& \text { assign S03 }=\sim \text { S2 \& S1 \& } \sim \text { S0; // State output3 } \\
& \text { assign S04 = ~S2 \& S1 \& S0; // State output4 } \\
& \text { assign S05 = S2 \& ~S1 \& ~S0; // State output5 } \\
& \text { assign S06 = S2 \& ~S1 \& S0; // State output6 } \\
& \text { assign S07 = S2 \& S1 \& ~S0; // State output7 } \\
& \text { assign S08 = S2 \& S1 \& S0; // State output8 }
\end{aligned}
$$

endmodule // End port declaration

## Output Logic

module output_logic(S01,S02,S03,S04,S05,S06,S07,S08,G1,Y1,R1, GL1,G2,Y2,R2,GL2, G3,Y3,R3,GL3,G4,Y4,R4,GL4 ); // Declaration of input and output output_logic module input S01,S02,S03,S04,S05,S06,S07,S08; // Declaration input
output G1,Y1,R1,GL1,G2,Y2,R2,GL2,G3,Y3,R3,GL3,G4,Y4,R4,GL4; // Declaration output of output_ logic

```
assign GL1 = S01+ S02 + S03+ S04; // Road1 Green (left-sign)
assign G1 = S01; // Road1 Green
assign Y1 = S02; // Road1 Yellow
assign R1 = S03 + S04 + S05 +S06 + S07 + S08; // Road1 Red
assign GL2 = S03 + S04 + S05 + S06; // Road2 Green (left-sign)
assign G2 = S03; Road2 Green
assign Y2 = S04; // Road2 Yellow
```

$$
\begin{aligned}
& \text { assign R2 }=\text { S01 + S02 + S05 + S06 + S07 + S08; // Road2 Red } \\
& \text { assign GL3 }=\text { S05 + S06 + S07 + S08; // Road3 Green (left-sign) } \\
& \text { assign G3 }=\text { S05; // Road3 Green } \\
& \text { assign Y3 }=\text { S06; // Road3 Yellow } \\
& \text { assign R3 }=\text { S01 + S02 + S03 + S04 + S07 + S08; // Road3 Red } \\
& \text { assign GL4 =S01 + S02 + S07 + S08; // Road4 Green (left-sign) } \\
& \text { assign G4 }=\text { S07; // Road4 Green } \\
& \text { assign Y4 }=\text { S08; // Road4 Yellow } \\
& \text { assign R4 }=\text { S01 + S02 + S03 + S04 + S05 + S06; // Road4 Red }
\end{aligned}
$$

## endmodule

## Trigger Logic

module trigger_logic (S01,S02,S03,S04,S05,S06,S07,S08,Short,Long); // Declaration input and output
input S01,S02,S03,S04,S05,S06,S07,S08; // Input declaration
output Short,Long; // Output declaration

> assign Long $=(\mathrm{S} 01+\mathrm{S} 03+\mathrm{S} 05+\mathrm{S} 07) ; / /$ Long timer output
> assign Short $=(\mathrm{S} 02+\mathrm{S} 04+\mathrm{S} 06+\mathrm{S} 08) ; / /$ Short timer output

## endmodule

Combinational Logic (State decoder, output logic \& trigger logic)
module combinational_logic ( S0,S1,S2,GL1,G1,Y1,R1,GL2,G2,Y2,R2, GL3, G3, Y3, R3, GL4, G4, Y4, R4, Long, Short); // Module delaration input S0,S1,S2; // Input declaration from state decoder
output GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3,Y3,R3,GL4,G4,Y4,R4; // Declaration output signals
output Long, Short; // Output timing
wire w1,w2,w3,w4,w5,w6,w7,w8; // to connect the module
state_decoder N1 (S0,S1,S2,w1,w2,w3,w4,w5,w6,w7,w8); // State decoder module output_logic N2 (w1,w2,w3,w4,w5,w6,w7,w8,G1,Y1,R1,GL1,G2,Y2, R2, GL2, G3, Y3, R3, GL3, G4, Y4, R4, GL4); // Output logic module
trigger_logic N3(w1,w2,w3,w4,w5,w6,w7,w8,Short,Long); // Trigger module for long and short timer
endmodule

D flip-flop
module D_flipflop (clock, D, Q); // Module declaration - input \& output
input D; // Input of D flip-flop
input clock; // Clock input
output Q; // Output of D flip-flop
reg Q; // Register output
always @ (negedge clock) // high went see nededge clock

$$
\mathrm{Q}<=\mathrm{D} ;
$$

endmodule

Input Logic
module input_logic (TS,TL,Vs,Q0,Q1,Q2,D0,D1,D2); //Module declaration
input TS,TL,Vs,Q0,Q1,Q2; // input declaration
output D0,D1,D2; // output declaration
assign D0
$=((\mathrm{Q} 0 \& \mathrm{TS})|(\sim \mathrm{Q} 1 \& \sim \mathrm{Q} 0 \& \sim \mathrm{TL} \& \mathrm{Vs})|(\mathrm{Q} 1 \& \sim \mathrm{Q} 0 \& \sim \mathrm{TL}) \mid(\mathrm{Q} 1 \&$ ~Q0 \& ~Vs)); // output1
assign D1
$=((\mathrm{Q} 0 \&(\mathrm{Q} 1 \sim \wedge \mathrm{TS}))|(\mathrm{Q} 1 \& \sim \mathrm{Q} 0 \& \mathrm{TL} \& \mathrm{Vs})|(\mathrm{Q} 1 \& \sim \mathrm{Q} 0 \& \sim \mathrm{TL}) \mid(\mathrm{Q} 1$ \& ~Q0 \& ~Vs)); // Output2
assign D2

$$
\begin{aligned}
& =((\mathrm{Q} 0 \& \sim \mathrm{TS}) \&(\mathrm{Q} 2 \wedge \mathrm{Q} 1)|(\mathrm{Q} 2 \& \mathrm{Q} 0 \& \mathrm{TS})|(\mathrm{Q} 2 \& \sim \mathrm{Q} 0) \&(\mathrm{Q} 1 \wedge \mathrm{TL}) \mid \\
& (\mathrm{Q} 2 \& \sim \mathrm{Q} 0 \& \sim \mathrm{Vs}) \mid(\mathrm{Q} 2 \& \sim \mathrm{Q} 0 \& \mathrm{Vs}) \&(\mathrm{Q} 1 \sim \wedge \mathrm{TL})) ; / / \text { Output3}
\end{aligned}
$$

endmodule

Sequential Logic (D flip-flop \& input logic)
module sequential_logic (clock,TS,TL,Vs,S0,S1,S2 ); // Module declaration
input clock; // clock input
input TS,TL,Vs; // declaration sequential logic inputs
output S0,S1,S2; // declaration sequential logic outputs
wire w1,w2,w3; // connection of module
input_logic (TS, TL, Vs, S0, S1, S2, w1, w2, w3); // input logic module
D_flipflop D1 (clock, w1, S0); // first bit counter module
D_flipflop D2 (clock, w2, S1); // second bit counter module
D_flipflop D3 (clock, w3, S2); third bit counter module

## endmodule

Combination of Sequential \& Combinational Logic
module sequence_combine (clock,TS,TL,Vs,GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3,
Y3,R3,GL4,G4,Y4,R4,Long,Short); // Module declaration
input clock; // input clock
input TS, TL, Vs; // input module declaration
output GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3,Y3,R3,GL4,G4,Y4,R4,Long,Short;
// output module declaration
wire S0,S1,S2; // jumper to connect a modules
sequential_logic (clock,TS,TL,Vs,S0,S1,S2); // sequential logic module combinational_logic(S0,S1,S2,GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3,Y3
,R3,GL4,G4,Y4,R4,Long,Short); // combinational logic module

## endmodule


[^0]:    IThis symbol is in accordance with ANSI/tEEE Std 91-1984 and IEC Publication 617-12.
    Pin numbers shown are for D.J. N. and W packages.

