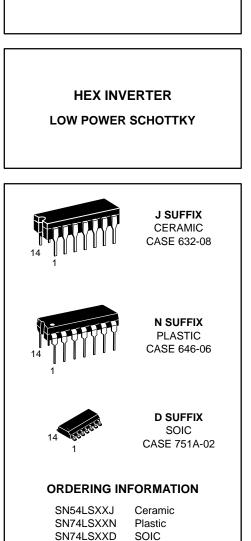

REFERENCES

- [1] Marco Wiering, Intelligent Traffic Light Control, April 2003. http://www.ercim.org/publication/Ercim_News/enw53/wiering.html
- [2] Thomas L.Floyd, (2006). 'Digital Fundamentals' 8th & 9th Edition, Pearson Education International.
- [3] De Schutter, B., De Moor B. Optimal Traffic Light Control for a Single Intersection International symposium on nonlinear theory and its applications (NOLTA '97) pages 1085-1088
- [4] Roozemond, D.A. Using intelligent agents for pro-active, real-time urban intersection control. European Journal of Operational Research 131(2001), 293-301.
- [5] Pappis, C.P. and Mamdani, E.H., (1977). A Fuzzy Logic Controller for a Traffic Junction, IEEE Transactions on Systems, Man and Cybernetics, pp 707-717.
- [6] Chiu, S., Adaptive traffic signal control using fuzzy logic.Proceedings of the IEEE Intelligent Vehicles Symposium, 98-107, 1992.
- [7] Hoyer, R., and Jumar, U., (1994). Fuzzy Control of Traffic Lights, Proc. IEEE International Conference on Fuzzy Systems, 1994, pp 1526-1531.
- [8] Janecek, J.J. and Zargham, M.R., (1995). A Fuzzy Logic Controller for a Traffic Signal, SPIE, Vol 2622, pp 687-691.
- [9] Chiang, K.T., Khalid, M., Yusof, R. 'Intelligent Traffic Lights Control by Fuzzy Logic', Malaysian Journal of Computer Science, Nov., 1995
- [10] Lin, Q., Kwan, B.W., and Tung, L.J., (1997). Traffic Signal Control Using Fuzzy Logic, Proc. IEEE International Conference on Fuzzy Systems 1997, pp 1644-1649.
- [11] Henry, J.J., Farges, J.L., Gallego, J.L. Neuro-fuzzy techniques for traffic control. Control Engineering Practice 6(1998), 755-761.
- [12] Trabia, M., Kaseko, M., Ande, M. Two-stage fuzzy logic controller for traffic signals. Transportation Research Part C7 (1999), 353-367.


- [13] Niittymäki, J., Nevala, R. Fuzzy adaptive traffic signal control principles and results. Proceedings of the IFSA World Congress and 20th NAFIPS International Conference. Vancouver, Canada, July 25-28, 2001, 2870-2875.
- [14] Wei, W., Zhang, Y., Bosco, Mbede, J., Zhang, Z., Song, J. Traffic signal control using fuzzy logic and MOGA. Proceedings of the 2001 IEEE International Conference on Systems, Man and Cybernetics. Tucson, USA, October 7-10, 2001, 1335-1340.
- [15] Weng Fook Lee, (1994). 'Verilog Coding for Logic Synthesis' 2nd Edition, John Wiley & Sons, Inc.USA.
- [16] University Program UP2 Education Kit User Guide, (2004) http://users.ece.gatech.edu/~hamblen/ALTERA/altera.htm.

HEX INVERTER

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
Т _А	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54, 74			-0.4	mA
IOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS04

				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions		
VIH	Input HIGH Voltage	_	2.0			V	Guaranteed Input All Inputs	HIGH Voltage for	
	Input LOW Voltage	54			0.7	V	Guaranteed Input	LOW Voltage for	
VIL	input LOW Voltage	74			0.8	v	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA	
Maria	Output HIGH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH} :	= MAX, V _{IN} = V _{IH}	
VOH	Culput mort voltage	74	2.7	3.5		V	or VIL per Truth Table		
Vo		54, 74		0.25	0.4	V		V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
					20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
lΗ	Input HIGH Current				0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V	
۱ _{IL}	Input LOW Current				-0.4	mA	$V_{CC} = MAX, V_{IN}$	= 0.4 V	
IOS	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current Total, Output HIGH				2.4	mA	V _{CC} = MAX		
	Total, Output LOW				6.6				

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25° C)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH	Turn-Off Delay, Input to Output		9.0	15	ns	V _{CC} = 5.0 V
^t PHL	Turn-On Delay, Input to Output		10	15	ns	C _L = 15 pF

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

FAIRCHILD

SEMICONDUCTOR

DM74LS138 • DM74LS139 Decoder/Demultiplexer

General Description

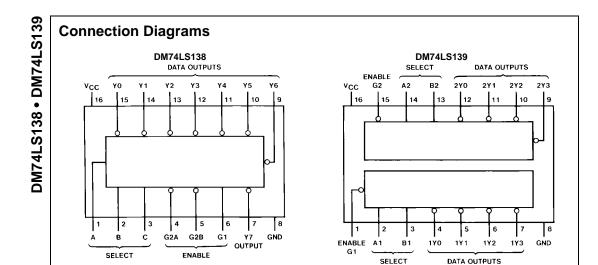
These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The DM74LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The DM74LS139 comprises two separate two-line-to-fourline decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

Features


- Designed specifically for high speed: Memory decoders
 - Data transmission systems
- DM74LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception

August 1986

Revised March 2000

- DM74LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
- Schottky clamped for high performance
- Typical propagation delay (3 levels of logic)
 DM74LS138 21 ns
 DM74LS139 21 ns
- Typical power dissipation
 DM74LS138 32 mW
 DM74LS139 34 mW

Order Number	Package Number	Package Description
DM74LS138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS138SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS138N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74LS139M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS139SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS139N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Function Tables

н

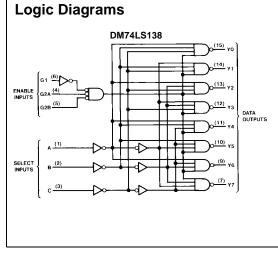
н

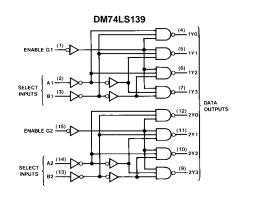
L

L

нн L н н н н н н L н

н н н н н н н н Н Н Т


	DM74LS138													
	Inputs					Outr	outs							
Enable Select							սպ	Juis						
G1	G2 (Note 1)	С	В	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7		
Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н		
L	Х	Х	Х	Х	н	н	н	н	н	н	н	н		
н	L	L	L	L	L	н	н	н	н	н	н	н		
н	L	L	L	н	н	L	н	н	н	н	н	н		
н	L	L	н	L	н	н	L	н	н	н	н	н		
н	L	L	н	н	н	н	н	L	н	н	н	н		
н	L	н	L	L	н	н	н	н	L	н	н	н		
н	L	Н	L	н	н	н	н	н	н	L	н	н		


D	M74L	S139

In	outs			Out	oute		
Enable	Se	ect	Outputs				
G	В	Α	Y0	Y1	Y2	Y3	
Н	Х	Х	Н	Н	Н	Н	
L	L	L	L	н	н	н	
L	L	н	н	L	н	н	
L	н	L	н	н	L	н	
L	н	н	н	н	н	L	

H = HIGH Level L = LOW Level X = Don't Care

Note 1: G2 = G2A + G2B

Absolute Maximum Ratings(Note 2)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS138 Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
'cc	Supply Voltage	4.75	5	5.25	V
и	HIGH Level Input Voltage	2			V
ΪL	LOW Level Input Voltage			0.8	V
ЭН	HIGH Level Output Current			-0.4	mA
DL	LOW Level Output Current			8	mA
A	Free Air Operating Temperature	0		70	°C

DM74LS138 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) Тур Symbol Conditions Units Parameter Min Max (Note 3) $V_{CC} = Min, I_I = -18 \text{ mA}$ Input Clamp Voltage -1.5 V VI HIGH Level Output Voltage $V_{CC} = Min, I_{OH} = Max, V_{IL} = Max, V_{IH} = Min$ 2.7 3.4 V_{OH} V $V_{CC} = Min$, $I_{OL} = Max$, $V_{IL} = Max$, $V_{IH} = Min$ V_{OL} LOW Level 0.35 0.5 V Output Voltage $I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$ 0.25 04 $V_{CC} = Max, V_I = 7V$ Input Current @ Max Input Voltage 0.1 mΑ h. $V_{CC} = Max, V_I = 2.7V$ HIGH Level Input Current 20 I_{IH} μΑ LOW Level Input Current $V_{CC} = Max, V_I = 0.4V$ -0.36 mΑ Ι_{ΙL} Short Circuit Output Current V_{CC} = Max (Note 4) los -20 -100 mΑ V_{CC} = Max (Note 5) Icc Supply Current 6.3 10 mΑ

Note 3: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 5: I_{CC} is measured with all outputs enabled and OPEN.

DM74LS138 Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)	Levels		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	of Delay	C _L =	15 pF	C _L =	50 pF	Units
				Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	2		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	2		27		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	3		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	3		27		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	2		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	2		24		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	3		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	3		28		40	ns

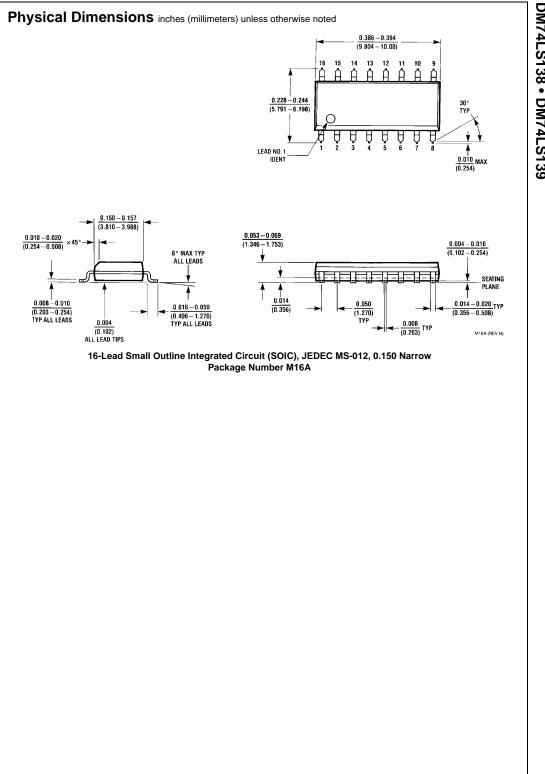
Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
/ _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
он	HIGH Level Output Current			-0.4	mA
OL	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

DM74LS139 Electrical Characteristics

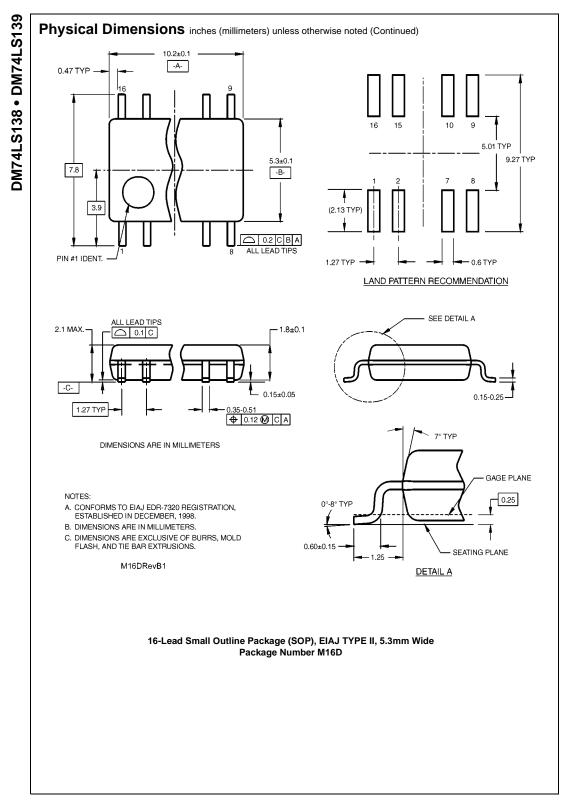
over recommended operating free air temperature range (unless otherwise noted)

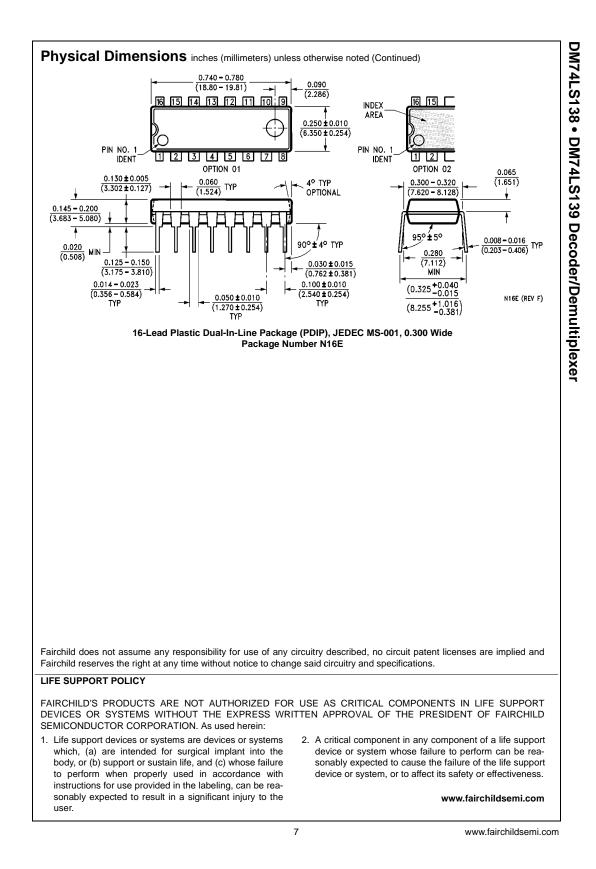
Symbol	Parameter	Conditions	Min	Typ (Note 6)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$ $V_{IL} = Max, V_{IH} = Min$	2.7	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$		0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$		0.25	0.4	
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μA
IIL	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.36	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 7)	-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 8)		6.8	11	mA

Note 6: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 8: I_{CC} is measured with all outputs enabled and OPEN.


DM74LS139 Switching Characteristics


at $V_{CC} = 5V$ and $T_A = 25^\circ C$

		From (Input)					
Symbol	Parameter	To (Output)	C _L = 15 pl		5 pF C _L =		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output		27		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output		24		40	ns

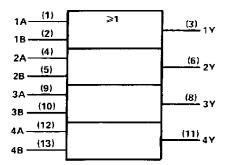
DM74LS138 • DM74LS139

SDLS100

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input OR gates.


The SN5432, SN54LS32 and SN54S32 are characterized for operation over the full military range of -55°C to 125°C. The SN7432, SN74LS32 and SN74S32 are characterized for operation from 0°C to 70°C.

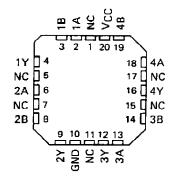
FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
A	B	Ŷ
н	х	н
х	н	н
L	L	L

logic symbol[†]

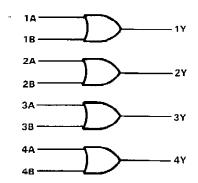
ì

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D. J. N. or W packages.

SN5432, SN54LS32, SN54S32, SN7432, SN74LS32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES DECEMBER 1983 - REVISED MARCH 1988

SN5432, SN54LS32, SN54S32 ... J OR W PACKAGE SN7432 . . . N PACKAGE SN74LS32, SN74S32 . . . D OR N PACKAGE (TOP VIEW)

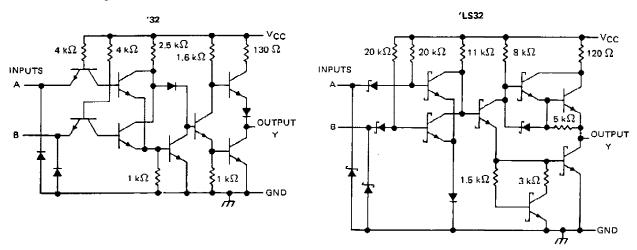

1A []1 1B []2 1Y []3 2A []4 2B []5	14 VCC 13 4B 12 4A 11 4Y 10 3B
2B 5 2Y 6	_
	8 3Y

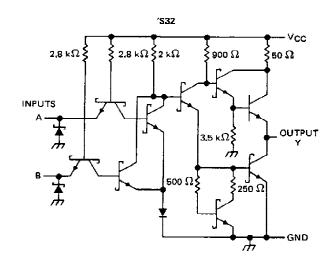
SN54LS32, SN54S32 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram

positive logic


$$Y = A + B \text{ or } Y = \overline{A \cdot B}$$


PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

SN5432, SN54LS32, SN54S32, SN7432, SN74LS32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

schematics (each gate)

Resistor values shown are nominal.

..

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage: '32, 'S32	5.5 V
′L\$32	
Operating free-air temperature: SN54'	
SN74′	0°C to 70°C
Storage temperature range	
NOTE 1: Voltage values are with respect to network ground terminal.	

recommended operating conditions

			SN5432			SN7432			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
⊻ін	Hgh-level input voltage	2			2			V	
VIL	Low-level imput voltage			0.8			0,8	v	
юн	High-level output current			- 0.8			~ 0.8	mA	
IOL.	Low-level output current			16			16	mА	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

BARAMETER		TEST CONDIT			SN5432		SN7432			UNIT
PARAMETER				MIN	TYP‡	ΜΑΧ	MIN	TYP‡	MAX	UNIT
 VIK	VCC = MIN,	li = - 12 mA				- 1.5			- 1,5	v
V _{OH}	V _{CC} = MIN,	V _{IH} ≈ 2 V,	I _{OH} ≠ − 0.8 mA	2.4	3.4		2.4	3.4		V
VOL	V _{CC} = MIN,	V <u>iL</u> ≈ 0.8 V,	IOL = 16 mA		0,2	0.4		0.2	0.4	V
Ц	V _{CC} = MAX,	V1 = 5.5 V				1			1	mΑ
_чн	V _{CC} = MAX,	V ₁ = 2.4 V				40			40	μA
հե	V _{CC} = MAX,	V ₁ = 0.4 V				1.6			- 1.6	mΑ
OS§	VCC = MAX			- 20		- 55	- 18		- 55	mА
ІССН	V _{CC} = MAX,	See Note 2			15	22		15	22	mA
	VCC * MAX,	V1 = 0 V			23	38		23	38	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C.
 § Not more than one output should be shorted at a time.

Ì

.

NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	TYP	МАХ	UNIT
TPLH	A or 8	×	R _L = 400 Ω,	C. = 15 = 5		10	15	ris
^t PHL	7018	· · · · · · · · · · · · · · · · · · ·	κ <u>ι</u> - 400 sz,	CL = 15 pF		14	22	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS32, SN74LS32 QUADRUPLE 2 INPUT POSITIVE OR GATES

recommended operating conditions

			SN54LS32			SN74LS32			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Suppl	y voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH Hgh-le	evel input voltage	2			2			V	
VIL Low-	evel input voltage			0.7			0.8	V	
OH High-I	level output current			- 0,4			- D .4	mĀ	
OL Low-I	evel output current			4			8	mΑ	
TA Opert	ating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		7567 00000			SN54LS	32		SN74LS	32	
PARAMETER		TEST CONDITIONS †		MIN	TYP\$	MAX	MIN	TYP‡	MAX	
Viĸ	V _{CC} - MIN,	l ₁ = 18 mA				- 1.5			- 1.5	v
∨он	VCC = MIN,	V _{IH} = 2 V,	I _{OH} = - 0.4 mA	2.5	3.4	•	2.7	3.4		V
14	VCC = MIN,	VIL = MAX,	10L = 4 mA		0.25	0.4		0.25	0.4	v
VOL	V _{CC} = MIN,	V _{IL} = MAX,	IOL = 8 mA					0.35	0.5	ľ v
1	V _{CC} - MAX,	V ₁ = 7 V				0.1			0.1	mA
- IH	VCC = MAX,	V _I = 2.7 V			•	20			20	μA
IIL.	V _{CC} = MAX,	VI = 0.4 V				- 0.4			- 0.4	mA
IOS§	VCC = MAX			- 20		- 100	- 20		- 100	mΑ
Іссн	V _{CC} = MAX,	See Note 2			3.1	6.2		3.1	6.2	mA
ICCL	VCC = MAX,	V ₁ = 0 V		l	4.9	9.8	I	4.9	9.8	mΑ

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

f All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COM	MIN	түр	МАХ	UNIT	
tPLH	1 az 0	V	D 010	0 - 15 -		14	22	пs
^t PHL	A or B	T	$R_{L} = 2 k \Omega,$	CL = 15 pF		14	22	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

recommended operating conditions

			SN5453	2		2	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
Viн	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			1			- 1	mΑ
^I OL	Low-level output current			20			20	mΑ
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS [†]			SN54S3	2		1.0017			
PARAMETER				MIN	TYP ‡	MAX	MIN	TYP #	MAX	UNIT
VIK	VCC = MIN,	lj = — 18 mA				- 1.2			- 1.2	V
∨он	V _{CC} = MIN,	V _{IH} = 2 V,	10H = - 1 mA	2.5	3.4		2.7	3.4		V
VoL	VCC = MIN,	V _{IL} = 0.8 V,	IOL = 20 mA			0.5			0.5	V
4	V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
Чн	VCC = MAX,	V = 2.7 V				50			50	μA
ΊL	V _{CC} = MAX,	Vi = 0.5 V				- 2			- 2	MA
los§	V _{CC} = MAX			- 40		— 1 00	- 40		- 100	mA
Іссн	V _{CC} = MAX,	See Note 2			18	32		18	32	mA
ICCL	VCC = MAX,	V1 = 0 V			- 38	68		- 38	68	mA

2

-

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, VCC = 5 V, TA = 25° C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON		MIN TY	P MAX	UNIT
tPLH	A or B	v	D = 200 O	C _I = 15 pF		4 7	ns
tPHL	A OF B	1	RL ≈ 280 Ω,			4 7	ns
tPLH	A or 8	v	R _I = 280 Ω,	CI = 50 pF		5	пs
^t ₽HL			ni 10 0 02,			5	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

TEXAS INSTRUMENTS www.ti.com

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9557401QCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9557401QDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
5962-9557401QDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
JM38510/30501B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
JM38510/30501B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
JM38510/30501BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/30501BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/30501BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
JM38510/30501BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
JM38510/30501SCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/30501SCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/30501SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
JM38510/30501SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SN5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN7432N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN7432N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN7432N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7432N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7432NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN7432NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS32D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS32DG4	ACTIVE	SOIC	D	14	50	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM
· · · · · · · · · · · · · · · · · · ·								

PACKAGE OPTION ADDENDUM

6-Dec-2006

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽
						no Sb/Br)		
SN74LS32DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS32DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS32DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS32DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS32DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS32J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS32J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS32N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS32N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS32N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS32N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS32NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS32NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS32NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS32NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS32NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS32NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S32DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI

PACKAGE OPTION ADDENDUM

6-Dec-2006

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74S32N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74S32N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74S32N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74S32N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74S32NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74S32NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74S32NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S32NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S32NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SNJ5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ5432J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ5432W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SNJ5432W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SNJ54LS32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54LS32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54LS32W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SNJ54LS32W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SNJ54S32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54S32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54S32J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54S32W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SNJ54S32W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

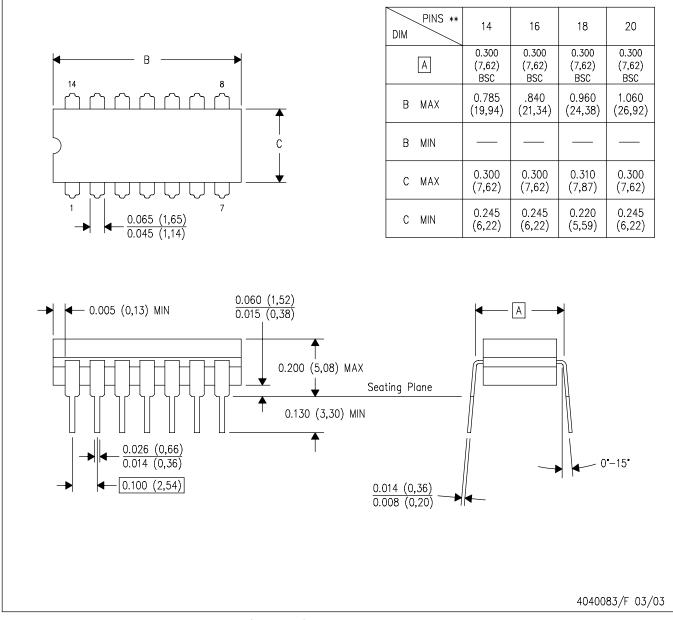
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS

compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

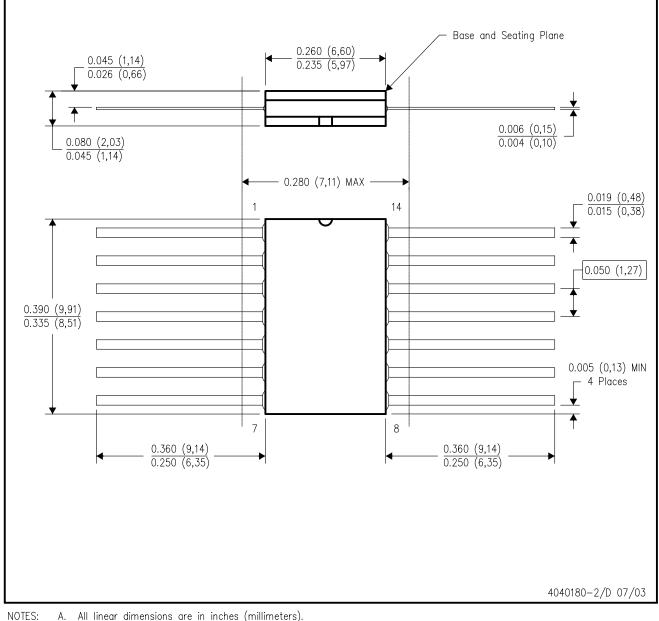

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



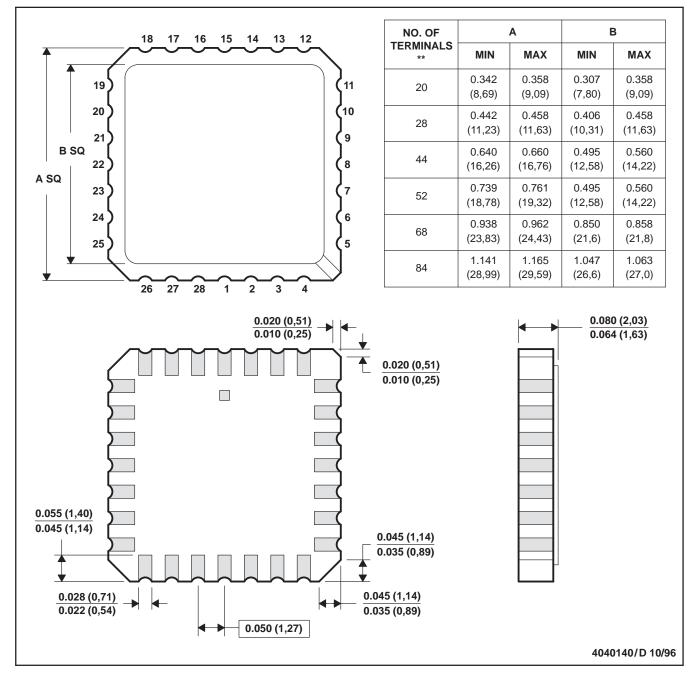
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB



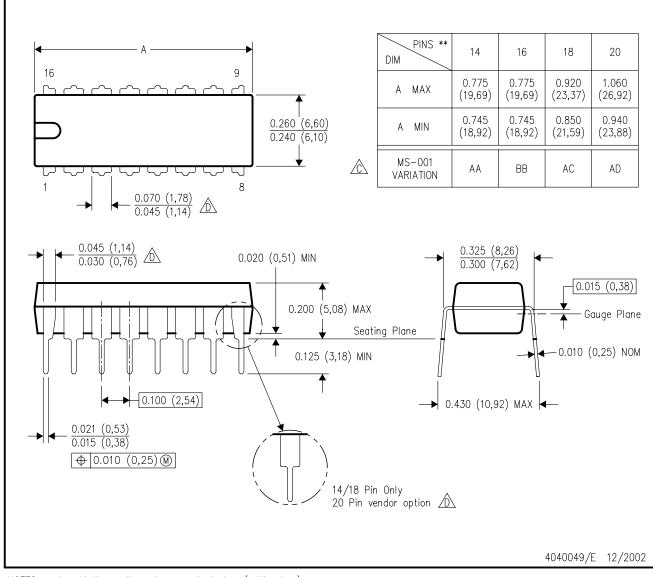
MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

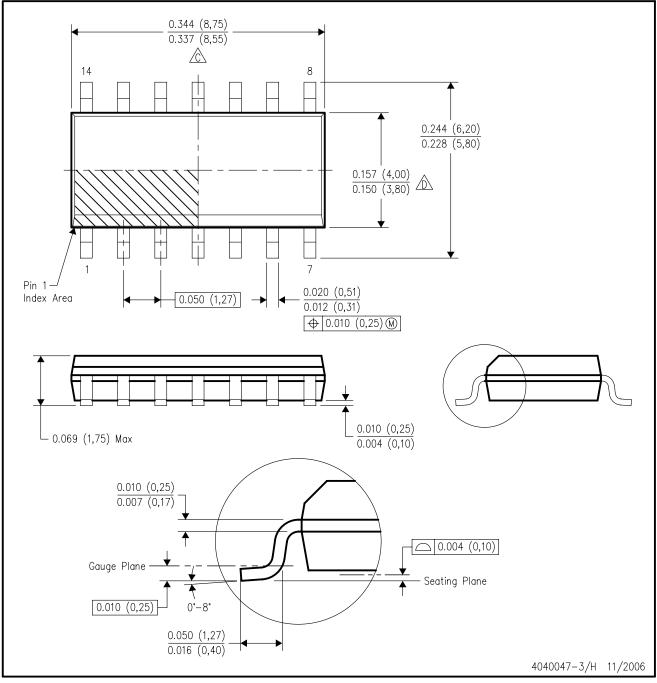
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AB.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

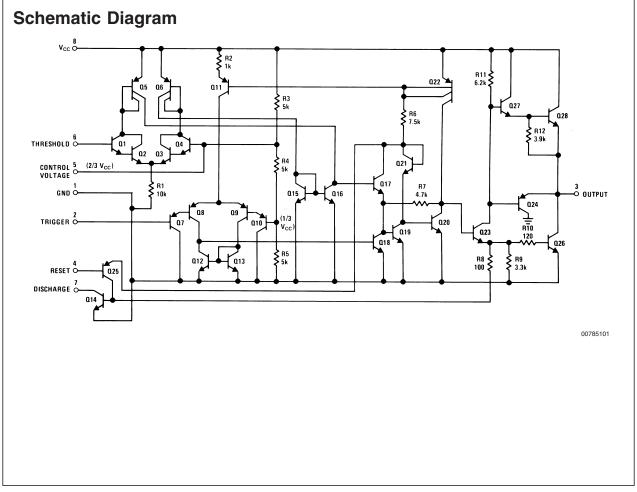
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

LM555 Timer General Description

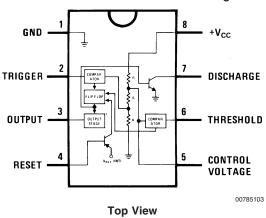

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200mA or drive TTL circuits.

Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per °C
- Normally on and normally off output
- Available in 8-pin MSOP package

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator



July 2006

LM555

Connection Diagram

Dual-In-Line, Small Outline and Molded Mini Small Outline Packages

Ordering Information

Package	Part Number	Package Marking	Media Transport	NSC Drawing
8-Pin SOIC	LM555CM	LM555CM	Rails	M08A
	LM555CMX	LM555CM	2.5k Units Tape and Reel	IVIUOA
8-Pin MSOP	LM555CMM	Z55	1k Units Tape and Reel	MUA08A
	LM555CMMX	Z55	3.5k Units Tape and Reel	MUAUGA
8-Pin MDIP	LM555CN	LM555CN	Rails	N08E

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	+18V
Power Dissipation (Note 3)	
LM555CM, LM555CN	1180 mW
LM555CMM	613 mW
Operating Temperature Ranges	
LM555C	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Soldering Information	
Dual-In-Line Package	
Soldering (10 Seconds)	260°C
Small Outline Packages	
(SOIC and MSOP)	
Vapor Phase (60 Seconds)	215°C
Infrared (15 Seconds)	220°C
See AN-450 "Surface Mounting Methods and Their	Effect

on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Notes 1, 2)

 $(T_A = 25^{\circ}C, V_{CC} = +5V \text{ to } +15V, \text{ unless othewise specified})$

Parameter	Conditions		Limits		Units	
			LM555C			
		Min	Тур	Max]	
Supply Voltage		4.5		16	V	
Supply Current	$V_{\rm CC} = 5V, R_{\rm L} = \infty$		3	6		
	$V_{CC} = 15V, R_{L} = \infty$		10	15	mA	
	(Low State) (Note 4)					
Timing Error, Monostable						
Initial Accuracy			1		%	
Drift with Temperature	$R_A = 1k \text{ to } 100k\Omega,$		50		ppm/°C	
	$C = 0.1 \mu F$, (Note 5)					
Accuracy over Temperature			1.5		%	
Drift with Supply			0.1		%/V	
Timing Error, Astable						
Initial Accuracy			2.25		%	
Drift with Temperature	R_A , $R_B = 1k$ to $100k\Omega$,		150		ppm/°C	
	C = 0.1µF, (Note 5)					
Accuracy over Temperature			3.0		%	
Drift with Supply			0.30		%/V	
Threshold Voltage			0.667		x V _{CC}	
Trigger Voltage	$V_{\rm CC} = 15V$		5		V	
	$V_{\rm CC} = 5V$		1.67		V	
Trigger Current			0.5	0.9	μA	
Reset Voltage		0.4	0.5	1	V	
Reset Current			0.1	0.4	mA	
Threshold Current	(Note 6)		0.1	0.25	μA	
Control Voltage Level	$V_{\rm CC} = 15V$	9	10	11	v	
	$V_{\rm CC} = 5V$	2.6	3.33	4	v v	
Pin 7 Leakage Output High			1	100	nA	
Pin 7 Sat (Note 7)						
Output Low	$V_{CC} = 15V, I_7 = 15mA$		180		mV	
Output Low	$V_{\rm CC} = 4.5 V, I_7 = 4.5 mA$		80	200	mV	

LM555

Electrical Characteristics (Notes 1, 2) (Continued)

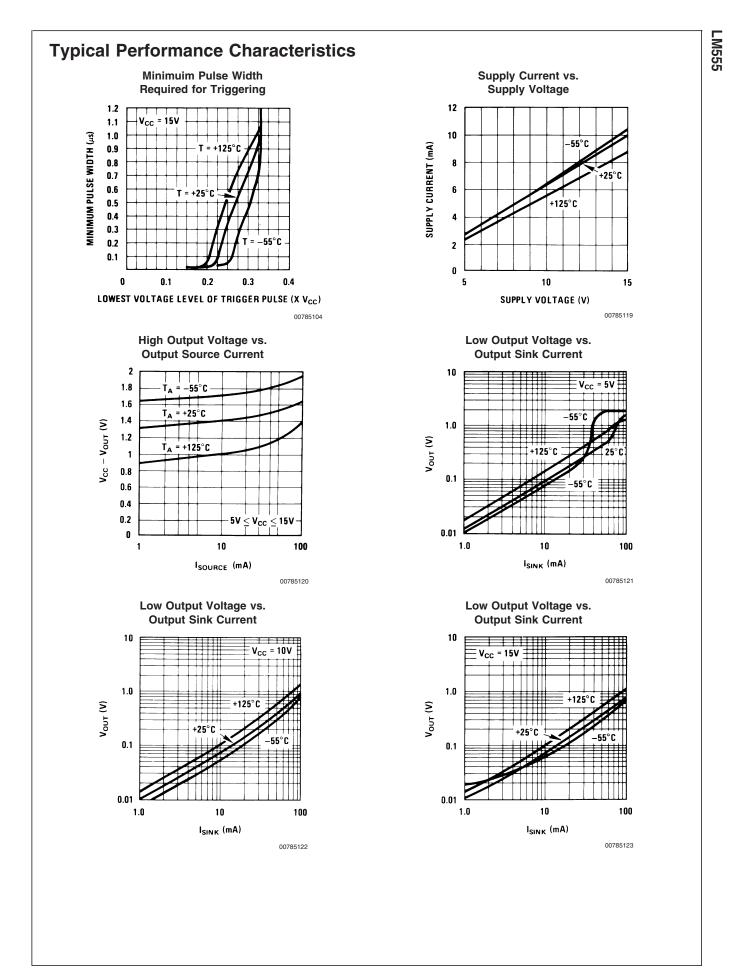
 $(T_A = 25^{\circ}C, V_{CC} = +5V \text{ to } +15V, \text{ unless othewise specified})$

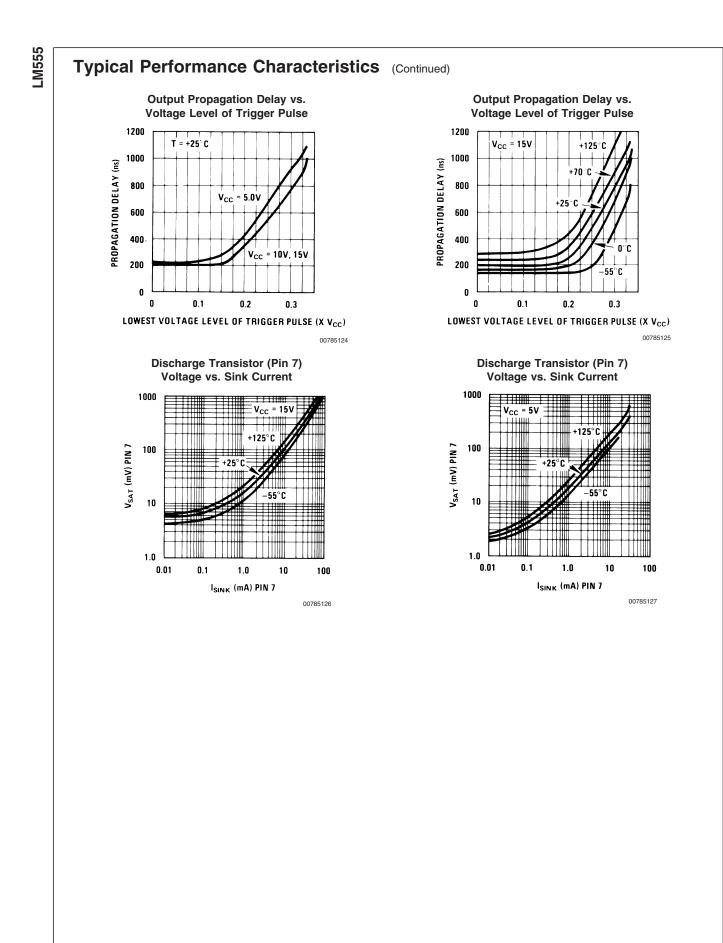
Parameter	Conditions		Limits				
			LM555C				
		Min	Тур	Мах			
Output Voltage Drop (Low)	V _{CC} = 15V						
	I _{SINK} = 10mA		0.1	0.25	V		
	I _{SINK} = 50mA		0.4	0.75	V		
	I _{SINK} = 100mA		2	2.5	V		
	I _{SINK} = 200mA		2.5		V		
	$V_{CC} = 5V$						
	I _{SINK} = 8mA				V		
	I _{SINK} = 5mA		0.25	0.35	V		
Output Voltage Drop (High)	$I_{SOURCE} = 200 \text{mA}, V_{CC} = 15 \text{V}$		12.5		V		
	$I_{SOURCE} = 100 \text{mA}, V_{CC} = 15 \text{V}$	12.75	13.3		V		
	$V_{\rm CC} = 5V$	2.75	3.3		V		
Rise Time of Output			100		ns		
Fall Time of Output			100		ns		

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For operating at elevated temperatures the device must be derated above 25°C based on a +150°C maximum junction temperature and a thermal resistance of 106°C/W (DIP), 170°C/W (S0-8), and 204°C/W (MSOP) junction to ambient.


Note 4: Supply current when output high typically 1 mA less at V_{CC} = 5V.


Note 5: Tested at V_{CC} = 5V and V_{CC} = 15V.

Note 6: This will determine the maximum value of $R_A + R_B$ for 15V operation. The maximum total ($R_A + R_B$) is 20M Ω .

Note 7: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

Note 8: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.

www.national.com

Applications Information

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (*Figure 1*). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 V_{CC} to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.

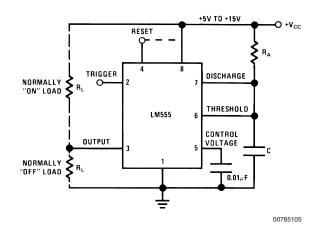
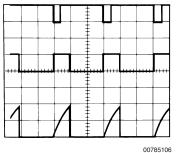



FIGURE 1. Monostable

The voltage across the capacitor then increases exponentially for a period of t = 1.1 R_A C, at the end of which time the voltage equals 2/3 V_{CC}. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. *Figure 2* shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply.

$$\label{eq:VCC} \begin{split} V_{CC} &= 5V\\ TIME &= 0.1 \text{ ms/DIV}.\\ R_A &= 9.1 k\Omega\\ C &= 0.01 \mu F \end{split}$$

Top Trace: Input 5V/Div. V. Middle Trace: Output 5V/Div. Bottom Trace: Capacitor Voltage 2V/Div.

FIGURE 2. Monostable Waveforms

During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10µs before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not in use, it is recommended that it be connected to $V_{\rm CC}$ to avoid any possibility of false triggering.

Figure 3 is a nomograph for easy determination of R, C values for various time delays.

NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle.

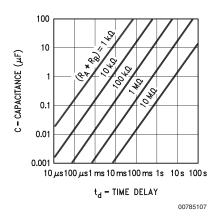
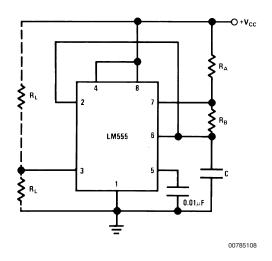



FIGURE 3. Time Delay

ASTABLE OPERATION

If the circuit is connected as shown in *Figure 4* (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through $R_A + R_B$ and discharges through R_B . Thus the duty cycle may be precisely set by the ratio of these two resistors.

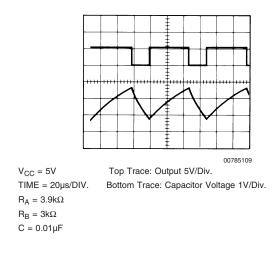


FIGURE 4. Astable

In this mode of operation, the capacitor charges and discharges between 1/3 $V_{\rm CC}$ and 2/3 $V_{\rm CC}$. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

Applications Information (Continued)

Figure 5 shows the waveforms generated in this mode of operation.

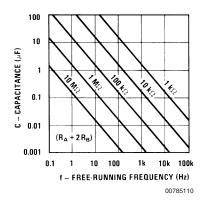
FIGURE 5. Astable Waveforms

The charge time (output high) is given by: $t_1 = 0.693 (R_A + R_B) C$ And the discharge time (output low) by:

t₂ = 0.693 (R_B) C

Thus the total period is:

$$T = t_1 + t_2 = 0.693 (R_A + 2R_B) C$$


The frequency of oscillation is:

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2 R_B) C}$$

Figure 6 may be used for quick determination of these RC values.

The duty cycle is:

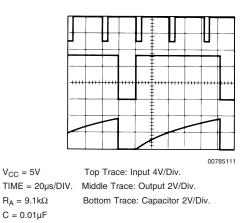

$$\mathsf{D} = \frac{\mathsf{R}_{\mathsf{B}}}{\mathsf{R}_{\mathsf{A}} + 2\mathsf{R}_{\mathsf{B}}}$$

FIGURE 6. Free Running Frequency

FREQUENCY DIVIDER

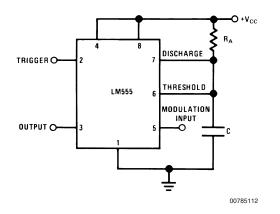
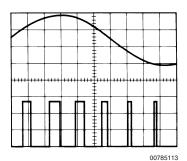

The monostable circuit of *Figure 1* can be used as a frequency divider by adjusting the length of the timing cycle. *Figure 7* shows the waveforms generated in a divide by three circuit.

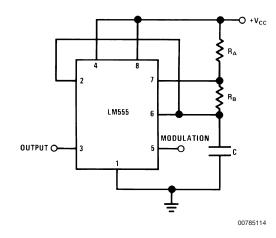
FIGURE 7. Frequency Divider


PULSE WIDTH MODULATOR

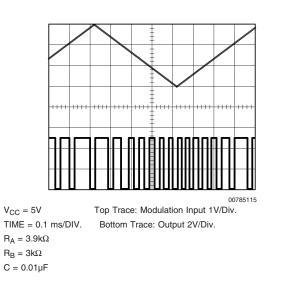
When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. *Figure* 8 shows the circuit, and in *Figure* 9 are some waveform examples.

FIGURE 8. Pulse Width Modulator

Applications Information (Continued)



 $\label{eq:VCC} V_{CC} = 5V \qquad \mbox{Top Trace: Modulation 1V/Div.}$ $\mbox{TIME} = 0.2 \mbox{ ms/DIV.} \quad \mbox{Bottom Trace: Output Voltage 2V/Div.}$ $\mbox{R}_A = 9.1 \mbox{k}\Omega$ $\mbox{C} = 0.01 \mbox{\mu} \mbox{F}$


FIGURE 9. Pulse Width Modulator

PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in *Figure 10*, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. *Figure 11* shows the waveforms generated for a triangle wave modulation signal.

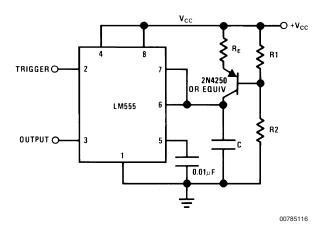


FIGURE 11. Pulse Position Modulator

LINEAR RAMP

When the pullup resistor, R_A , in the monostable circuit is replaced by a constant current source, a linear ramp is generated. *Figure 12* shows a circuit configuration that will perform this function.

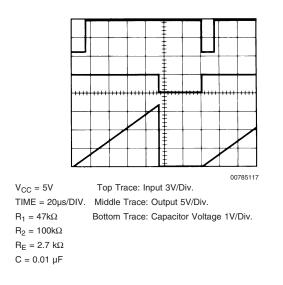

FIGURE 12.

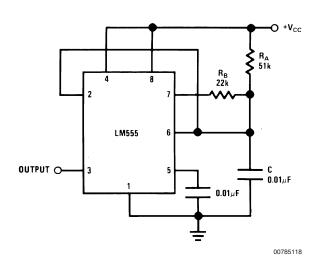
Figure 13 shows waveforms generated by the linear ramp. The time interval is given by:

$$T = \frac{2/3 V_{CC} R_E (R_1 + R_2) C}{R_1 V_{CC} - V_{BE} (R_1 + R_2)} \\ V_{BE} \cong 0.6V$$

$$V_{BE}\simeq 0.6V$$

Applications Information (Continued)

FIGURE 13. Linear Ramp


50% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors R_A and R_B may be connected as in *Figure 14*. The time period for the output high is the same as previous, $t_1 = 0.693 R_A C$. For the output low it is $t_2 =$

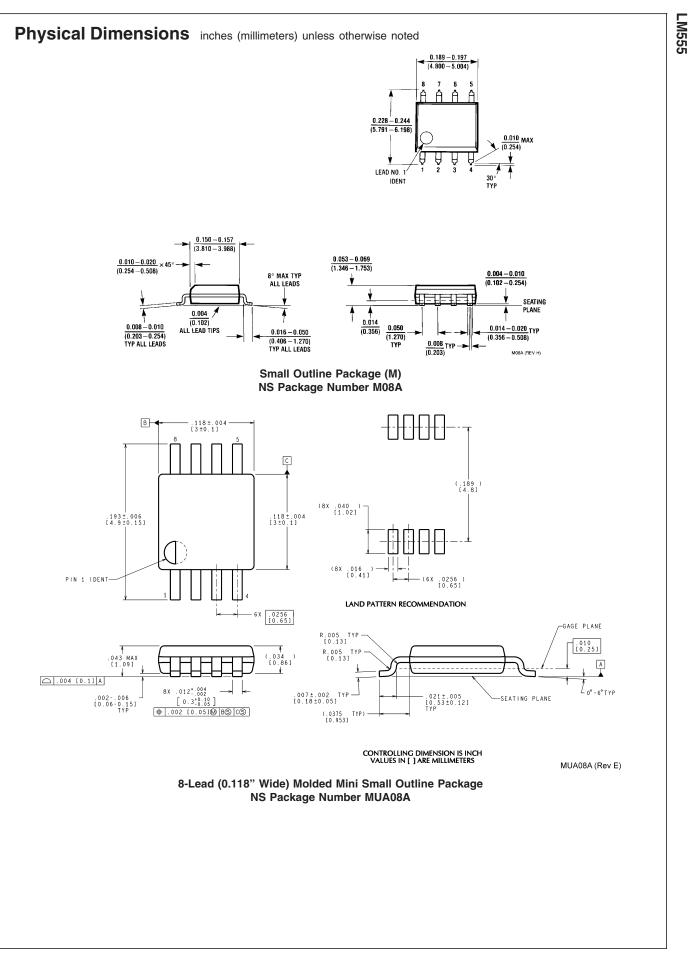
$$\left[(\mathsf{R}_{\mathsf{A}} \, \mathsf{R}_{\mathsf{B}}) / (\mathsf{R}_{\mathsf{A}} + \mathsf{R}_{\mathsf{B}}) \right] \mathsf{C} \, \ln \left[\frac{\mathsf{R}_{\mathsf{B}} - 2\mathsf{R}_{\mathsf{A}}}{2\mathsf{R}_{\mathsf{B}} - \mathsf{R}_{\mathsf{A}}} \right]$$

Thus the frequency of oscillation is

$$f = \frac{1}{t_1 + t_2}$$

FIGURE 14. 50% Duty Cycle Oscillator

Note that this circuit will not oscillate if R_B is greater than 1/2 R_A because the junction of R_A and R_B cannot bring pin 2 down to 1/3 V_{CC} and trigger the lower comparator.


ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is $0.1\mu F$ in parallel with $1\mu F$ electrolytic.

Lower comparator storage time can be as long as $10\mu s$ when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to $10\mu s$ minimum.

Delay time reset to output is $0.47\mu s$ typical. Minimum reset pulse width must be $0.3\mu s$, typical.

Pin 7 current switches within 30ns of the output (pin 3) voltage.

VCC

14

1

13

2

12

3

11

4

* OPEN COLLECTOR OUTPUTS

10

5

9

6

8

7

GND

QUAD 2-INPUT AND GATE

SN54/74LS09 **QUAD 2-INPUT AND GATE** LOW POWER SCHOTTKY **J SUFFIX** CERAMIC CASE 632-08 N SUFFIX PLASTIC CASE 646-06 D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ SN74LSXXN SN74LSXXD

Ceramic Plastic SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	- 55 0	25 25	125 70	°C
VOH	Output Voltage — High	54, 74			5.5	V
IOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS09

				Limits				
Symbol	ymbol Parameter		Min	Тур	Max	Unit	Test Co	onditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	HIGH Voltage for
Ma		54			0.7	v	Guaranteed Input	LOW Voltage for
VIL	Input LOW Voltage	74			0.8		All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
IOH	Output HIGH Current	54, 74			100	μA	$V_{CC} = MIN, V_{OH} = MAX$	
	Output LOW Voltage	54, 74		0.25	0.4	V		$V_{CC} = V_{CC} MIN,$
VOL		74		0.35	0.5	V	I _{OL} = 8.0 mA	VIN = VIL or VIH per Truth Table
l					20	μA	$V_{CC} = MAX, V_{IN}$	= 2.7 V
ЧН	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
۱ _{IL}	Input LOW Current				-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$	
ICC	Power Supply Current Total, Output HIGH				4.8	mA	V _{CC} = MAX	
	Total, Output LOW				8.8	1		

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

		Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
^t PLH	Turn-Off Delay, Input to Output		20	35	ns	V _{CC} = 5.0 V	
^t PHL	Turn-On Delay, Input to Output		17	35	ns	$C_L = 15 \text{ pF}, R_L = 2.0 \text{ k}\Omega$	

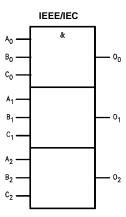
74F11

Triple 3-Input AND Gate

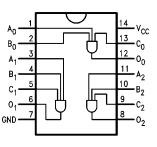
General Description

FAIRCHILD

SEMICONDUCTOR


This device contains three independent gates, each of which performs the logic AND function.

Ordering Code:


Order Number	Package Number	Package Description
74F11SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F11SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F11PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	escription U.L. HIGH/LOW	
A _n , B _n , C _n	Inputs	1.0/1.0	20 µA/–0.6 mA
O _n	Outputs	50/33.3	–1 mA/20 mA

© 1999 Fairchild Semiconductor Corporation DS009459

www.fairchildsemi.com

74F11

Absolute Maximum Ratings(Note 1)

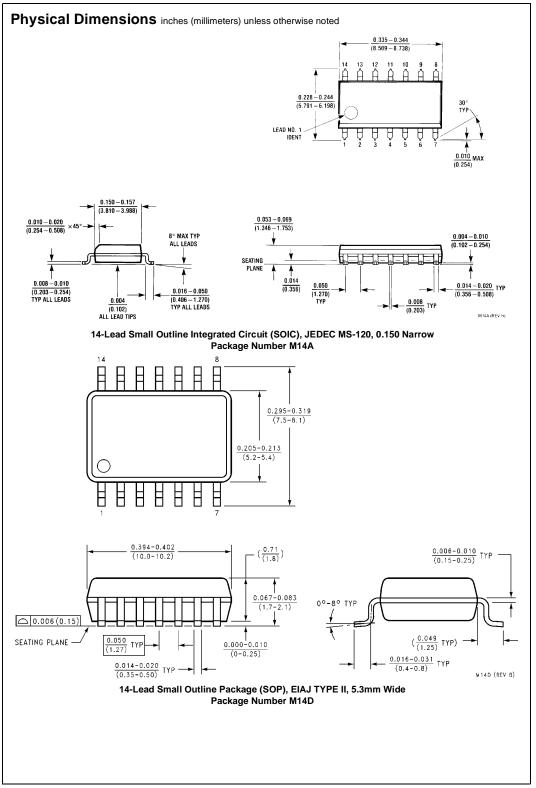
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to $V_{\mbox{\scriptsize CC}}$
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated $\rm I_{OL}$ (mA)

Recommended Operating Conditions

Free Air Ambient Temperature	è
Supply Voltage	

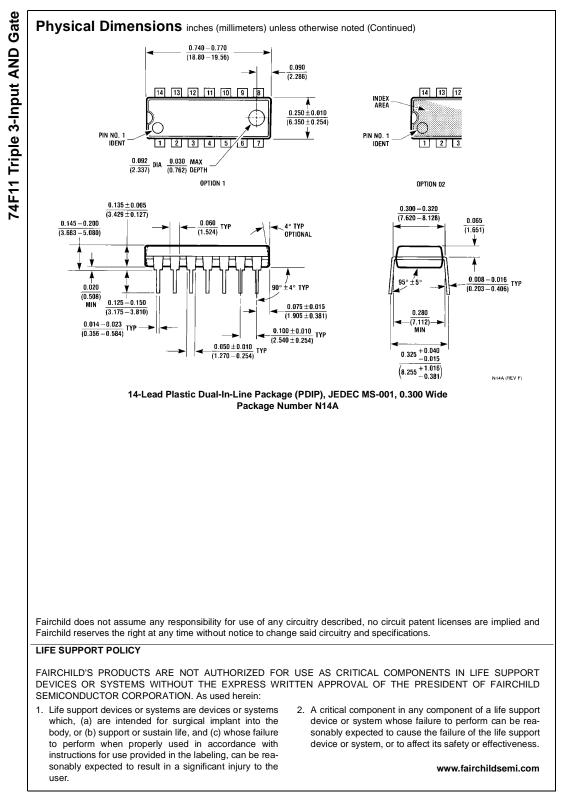
 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device -0.5V to V_{CC} may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Мах	Units	Vcc	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
	Voltage							
IIH	Input HIGH				5.0	μΑ	Max	V _{IN} = 2.7V
	Current				5.0		IVIAA	
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΛ		VIN - 7.0V
I _{CEX}	Output HIGH				50	μΑ	Max	Varia – Var
	Leakage Current				50		IVIAA	V _{OUT} = V _{CC}
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All other pins grounded
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current				3.75	μΑ	0.0	All other pins grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
los	Output Short-Circuit Currer	nt	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CCH}	Power Supply Current			4.1	6.2	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		1	6.5	9.7	mA	Max	$V_{O} = LOW$


AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	3.0	4.2	5.6	2.5	7.5	3.0	6.6	20
t _{PHL}	A _n , B _n , C _n to O _n	2.5	4.1	5.5	2.0	7.5	2.5	6.5	ns

74F11

www.fairchildsemi.com

www.fairchildsemi.com

SCLS587B – JUNE 2004 – SEPTEMBER 2004

 Qualification in Accordance With AEC-Q100[†] 	D OR PW PACKAGE (TOP VIEW)
 Qualified for Automotive Applications 	
 Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval 	1A [] 1 14 [] V _{CC} 1B [] 2 13 [] 4B 1Y [] 3 12 [] 4A 2A [] 4 11 [] 4Y
 Wide Operating Voltage Range of 2 V to 6 V 	28 15 10 1 3B
 Outputs Can Drive Up To 10 LSTTL Loads 	2Y 🛛 6 9 🗍 3A
 Low Power Consumption, 20-μA Max I_{CC} 	GND [] 7 8] 3Y
• ±4-mA Output Drive at 5 V	

- Low Input Current of 1 μA Max
- True Logic

[†] Contact factory for details. Q100 qualification data available on request.

description/ordering information

This device contains four independent 2-input exclusive-OR gates. They perform the Boolean function $Y = A \oplus B$ or $Y = \overline{AB} + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input is reproduced in true form at the output. If one of the inputs is high, the signal on the other input is reproduced inverted at the output.

TA	PACKAGE [‡]		PACKAGE [‡]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	SOIC – D	Reel of 2500	SN74HC86IDRQ1	HC86I			
-40°C 10 85°C	TSSOP – PW	Reel of 2000	SN74HC86IPWRQ1	HC86I			
-40°C to 125°C	SOIC – D	Reel of 2500	SN74HC86QDRQ1	HC86Q			
-40°C to 125°C	TSSOP – PW	Reel of 2000	SN74HC86QPWRQ1	HC86Q			

ORDERING INFORMATION

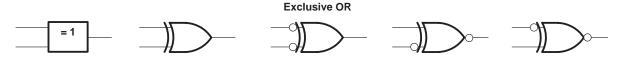
[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

(each gate)					
INPU	JTS	OUTPUT			
Α	В	Y			
L	L	L			
L	Н	Н			
н	L	Н			
Н	Н	L			

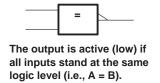
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

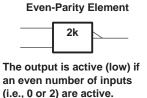
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2004, Texas Instruments Incorporated

SCLS587B – JUNE 2004 – SEPTEMBER 2004


exclusive-OR logic


An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

These are five equivalent exclusive-OR symbols valid for an 'HC86 gate in positive logic; negation may be shown at any two ports.

Logic Identity Element

Odd-Parity Element

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input clamp current, I_{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	86°C/W
PW package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS587B - JUNE 2004 - SEPTEMBER 2004

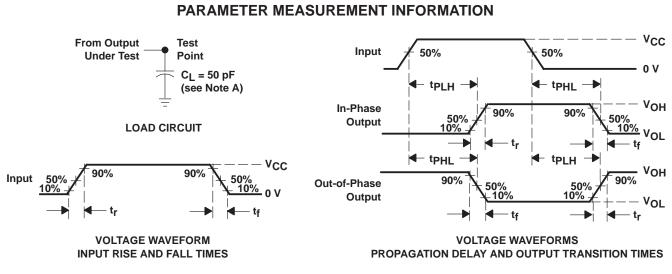
recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		2	5	6	V
		V _{CC} = 2 V	1.5			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V
		V _{CC} = 6 V	4.2			
		V _{CC} = 2 V			0.5	
VIL	Low-level input voltage	$V_{CC} = 4.5 V$			1.35	V
		V _{CC} = 6 V			1.8	
VI	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		$V_{CC} = 2 V$			1000	
$\Delta t / \Delta v$	Input transition rise/fall time	$V_{CC} = 4.5 V$			500	ns
		V _{CC} = 6 V			400	
Т _А	Operating free-air temperature		-40		125	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			T _A = −40°C TO 125°C		T _A = −40°C TO 85°C		UNIT
				MIN	MAX	MIN	MAX	
	VI = VIH or VIL		2 V	1.9		1.9		
		I _{OH} = -20 μA	4.5 V	4.4		4.4		
∨он			6 V	5.9		5.9		V
		$I_{OH} = -4 \text{ mA}$	4.5 V	3.7		3.84		
		I _{OH} = -5.2 mA	6 V	5.2		5.34		
			2 V		0.1		0.1	
		l _{OL} = 20 μA	4.5 V		0.1		0.1	
VOL	$V_{I} = V_{IH} \text{ or } V_{IL}$		6 V		0.1		0.1	V
		$I_{OL} = 4 \text{ mA}$	4.5 V		0.4		0.33	
		I _{OL} = 5.2 mA	6 V		0.4		0.33	
Ц	$V_{I} = V_{CC} \text{ or } 0$		6 V		±1000		±1000	nA
ICC	$V_{I} = V_{CC} \text{ or } 0,$	I ^O = 0	6 V		40		20	μΑ
Ci			2 V to 6 V		10		10	pF


SCLS587B - JUNE 2004 - SEPTEMBER 2004

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	vcc	T _A = −40°C TO 125°C	T _A = -40°C TO 85°C	UNIT	
	(INPUT)	(OUTPUT)		MIN MAX	MIN MAX		
	^t pd A or B			2 V	150	125	
^t pd		Y	4.5 V	30	25	ns	
			6 V	25	21		
			2 V	110	95		
tt		Y	4.5 V	22	19	ns	
			6 V	19	16		

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TYP	UNIT
Cpd	Power dissipation capacitance per gate	No load	35	pF

NOTES: A. C_L includes probe and test-fixture capacitance.

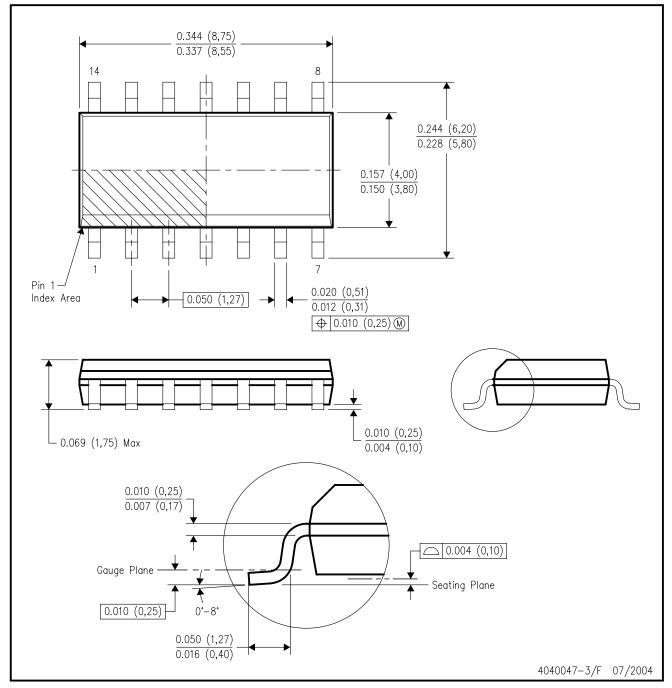

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_Q = 50 Ω , t_f = 6 ns, t_f = 6 ns.
 - C. The outputs are measured one at a time, with one input transition per measurement.
 - D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

D (R-PDSO-G14)

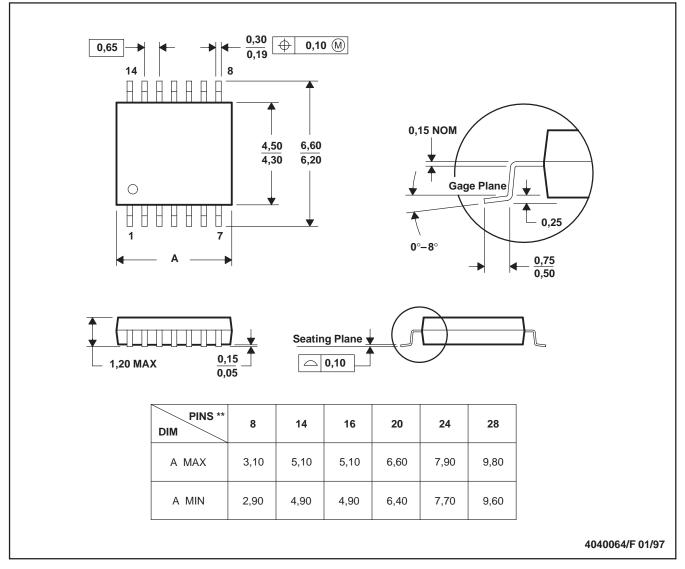
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AB.


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

This datasheet has been download from:

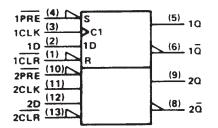
www.datasheetcatalog.com

Datasheets for electronics components.

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent D-type positive-edge-triggered flip-flops. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.


The SN54' family is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74' family is characterized for operation from 0 °C to 70 °C.

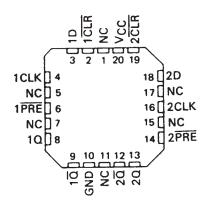
FUNCTION TABLE

	INPUT	OUTP	UTS		
PRE	CLR	CLK	D	۵	ā
L	н	×	X	н	L
н	L	×	х	L	н
L	L	x	х	н†	H t
н	н	Ť	н	н	L
н	н	t	L	L	н
н	н	L	х	Q ₀ .	ā0

[†] The output levels in this configuration are not guaranteed to meet the minimum levels in V_{OH} if the lows at preset and clear are near V_{IL} maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

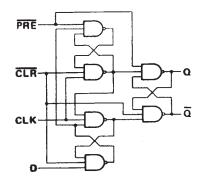
logic symbol[‡]

[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, J, N, and W packages.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. SN5474...J PACKAGE SN54LS74A, SN54S74...J OR W PACKAGE SN7474...N PACKAGE SN74LS74A, SN74S74...D OR N PACKAGE (TOP VIEW)

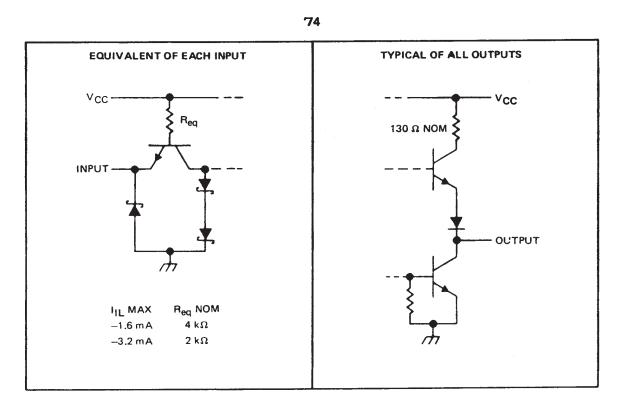
1	U14	Þvcc
2	13	2CLR
3	12	D2D
4	11	2CLK
5	10	2PRE
6	9	20
7	8	<u>]</u> 20
	3 4 5	3 12 4 11 5 10


SN5474	W	P/	ACKAGE							
(TOP VIEW)										
1CLK	1 U									
	2	13]10							
1 CLR	3	12								
Vcc口	4	11	GND							
2CLR	5	10]2 <u>0</u>							
2D 🗋	6	9	20							
2CLK	7	8	2PRE							

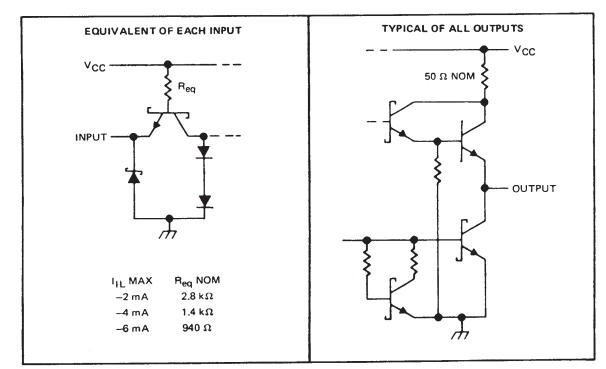
SN54LS74A, SN54S74 . . . FK PACKAGE (TOP VIEW)

NC - No internel connection

logic diagram (positive logic)

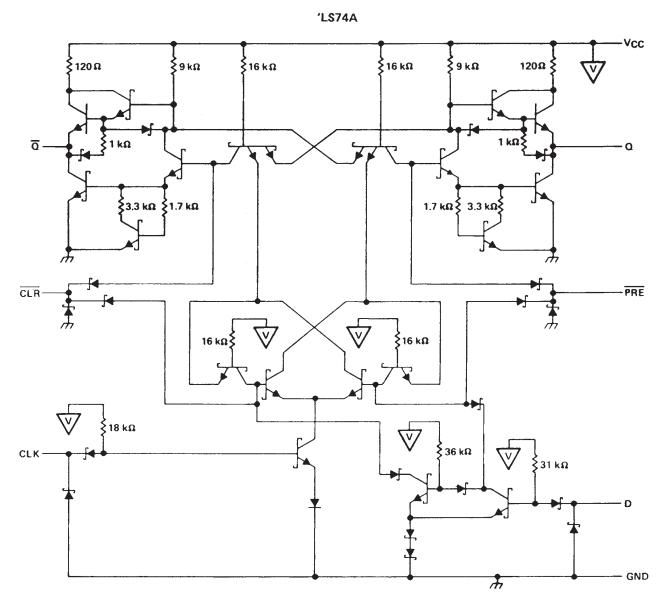

Copyright © 1988, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 – DECEMBER 1983 – REVISED MARCH 1988

SDEGTIG - DECEMBER 1905 - REVISED MARCH I

schematics of inputs and outputs



'S74

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage: '74, 'S74	5.5 V
'LS74A	7 V
Operating free-air temperature range: SN54'	-55°C to 125°C
SN74′	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 – DECEMBER 1983 – REVISED MARCH 1988

recommended operating conditions

				SN5474		SN7474			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	<u>v</u>
10H	High-level output current				- 0.4			- 0.4	mA
101	Low-level output current				16			16	mA
		CLK high	30			30			Į –
tw	Pulse duration	CLK low	37			37			ns
••	Γ	PRE or CLR low	30			30			
t _{su}	Input setup time before CLK†	Input setup time before CLK1				20			ns
th	Input hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN5474					UNIT												
PA	RAMETER		EST CONDITIO	NSI	MIN	TYP\$	MAX	MIN	түр‡	MAX											
VIK		V _{CC} = MIN,	li = - 12 mA				- 1.5			- 1.5	V										
VOH	· · · · · · · · · · · · · · · · · · ·	V _{CC} = MIN, I _{OH} = - 0.4 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		v										
VOL		V _{CC} = MIN, I _{OL} = 16 mA	V _{IH} = 2 V,	VIL = 0.8 V,		0.2	0.4		0.2	0.4	v										
4		V _{CC} = MAX,	VI = 5.5 V				1			1	mA										
	D						40			40											
ųн	ČLR	1					120			120	μΑ										
	All Other	V _{CC} = MAX,	VI = 2.4 V	vi = 2.4 v	VI = 2.4 V	VI = 2.4 V	$v_1 = 2.4 v$	VI = 2.4 V	$v_1 = 2.4 V$	VI = 2.4 V				80			80]			
	D						- 1.6			- 1.6											
	PRES						- 1.6			- 1.6	mA										
ΊL	CLR §	V _{CC} = MAX,	$V_1 = 0.4 V$				- 3.2	Ť T		- 3.2] ''''										
	CLK	1				rd-	- 3.2			- 3.2											
los1		V _{CC} = MAX			- 20		- 57	- 18		- 57	mA										
ICC#		V _{CC} = MAX,	See Note 2			8.5	15		8.5	15	mA										

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[§]Clear is tested with preset high and preset is tested with clear high.

Not more than one output should be shown at a time.

#Average per flip-flop.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

switching charateristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	түр	MAX	UNIT
f _{max}					15	25		MHz
^t PLH							25	ns
^t PHL	PRE or CLR	Q or Q	R _L = 400 Ω,	C _L = 15 pF			40	ns
				-		14	25	ns
<u>ւթրн</u> քեր	CLK	Q or Q				20	40	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			St	154LS7	4A		SN74LS	74A	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage				0.7			0.8	V
ЮН	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		25	0		25	MHz
		CLK high	25			25			ns
tw	Pulse duration	PRE or CLR low	25			25			
		High-level data	20			20			ns
t _{su}	Setup time-before CLK 1	Low-level data	20			20			
th	Hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N54LS7	4A	S	N74LS7	4A	UNIT
PA	RAMETER	TES	T CONDITIONS [†]		MIN	TYP [‡]	MAX	MIN	түр‡	MAX	UNIT _
VIK		V _{CC} = MIN,	l _l = 18 mA				1.5			- 1.5	V
V _{OH}		V _{CC} = MIN, 1 _{OH} = 0.4 mA	V _{IH} = 2 V,	V _{IL} = MAX,	2.5	3.4		2.7	3.4		v
		V _{CC} = MIN, I _{OL} = 4 mA	VIL = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	v
VOL		V _{CC} = MIN, I _{OL} = 8 mA	V _{IL} = MAX,	V _{1H} = 2 V,					0.35	0.5	
	D or CLK				1		0.1			0.1	mA
IL .	CLR or PRE	V _{CC} = MAX,	V1 = 7 V				0.2			0.2	1023
	D or CLK						20			20	μA
ЦН	CLR or PRE	V _{CC} = MAX,	VI = 2.7 V				40			40	μ
	DorCLK						- 0.4			- 0.4	mA
HL.	CLR or PRE	V _{CC} = MAX,	V _I = 0.4 V				- 0.8			- 0.8	
los§	•	V _{CC} = MAX,	See Note 4		- 20		- 100	- 20		- 100	mA
ICC (To	tal)	V _{CC} = MAX,	See Note 2			4	8		4	8	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with $V_0 = 2.25$ V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CO	NDITIONS	MIN	түр	MAX	UNIT
f _{max}					25	33		MHz
^t PLH			$R_{\rm L} = 2 k \Omega_{\rm c}$	CL = 15 pF		13	25	ns
^t PHL	CLR, PRE or CLK	Q or Q	_			25	40	ns

Note 3: Load circuits and voltage waveforms are shown in Section 1.

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 – DECEMBER 1983 – REVISED MARCH 1988

recommended operating conditions

				SN54S7	4		SN74S7	4	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
ЮН	High-level output current				- 1			- 1	mA
IOL	Low-level output current				20			20	mA
		CLK high	6			6			1
tw	Pulse duration	CLK low	7.3			7.3			ns
		CLR or PRE low	7			7			
		High-level data	3			3			ns
t _{su}	Setup time, before CLK f	Low-level data	3			3			113
th	Input hold time - data after CLK †		2			2			ns
ТА	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

······				+		SN54S7	4		SN74S7	4	UNIT
PAR	AMETER		TEST CONDITI	ONS	MIN	TYP [‡]	MAX	MIN	түр‡	MAX	UNIT
VIK		V _{CC} = MIN,	l _l = - 18 mA,				- 1.2			- 1.2	V
		V _{CC} = MIN,	V _{IH} = 2 V,	V _{1L} = 0.8 V,	2.5	3.4		2.7	3.4		v
v _{он}		1 _{OH} = - 1 mA			2.5	5.4			0		
Vei	-	$V_{CC} = MIN,$	V _{1H} = 2 V,	V _{IL} = 0.8 V,			0.5			0.5	v
VOL		I _{OL} = 20 mA									
t _l		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
	D						50			50	
ЧН	CLR	V _{CC} = MAX,	V _I = 2.7 V				150			150	μA
	PRE or CLK						100			100	
	D						- 2			- 2	
	CLR	V _{CC} = MAX,	V. = 0 5 V				- 6			- 6	mA
կը	PRE	VCC = MAA,	VI = 0.5 V				4			- 4	
	CLK						- 4			-4	
loss		V _{CC} = MAX			- 40		- 100	- 40		- 100	mA
ICC#		V _{CC} = MAX,	See Note 2			15	25		15	25	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

IClear is tested with preset high and preset is tested with clear high.

#Average per flip-flop.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COND	TIONS	MIN	ТҮР	MAX	UNIT
fmax					75	110		MHz
^t PLH	PRÉ or CLR	Qorā				4	6	ns
	PRE or CLR (CLK high)			0 45 F		9	13.5	ns
^t PHL	PRE or CLR (CLK low)	a or a	$R_{L} = 280 \Omega$,	CL = 15 pF		5	8	115
^t PLH						6	9	ns
tPHL	CLK	QorQ				6	9	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

TEXAS INSTRUMENTS www.ti.com

17-Oct-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
JM38510/00205BCA	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
JM38510/00205BDA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
JM38510/00205BDA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
JM38510/07101BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07101BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07101BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07101BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SN5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN7474DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN7474DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN7474N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7474N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7474N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7474N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS74AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM
1								

PACKAGE OPTION ADDENDUM

WTEXAS INSTRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
SN74LS74ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS74AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS74AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74AN3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS74AN3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS74ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI

PACKAGE OPTION ADDENDUM

17-Oct-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74S74N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74S74NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S74NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ5474W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ5474W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ54LS74AFK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AFK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AW	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AW	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74W	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74W	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

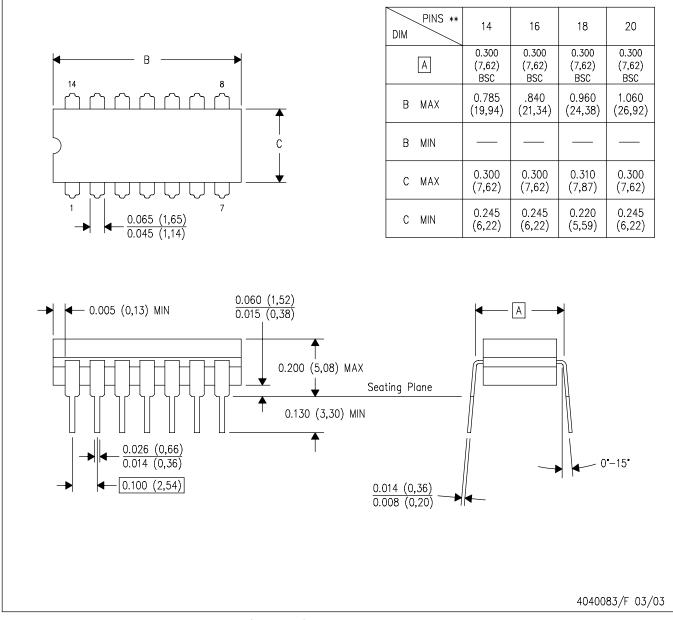
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is

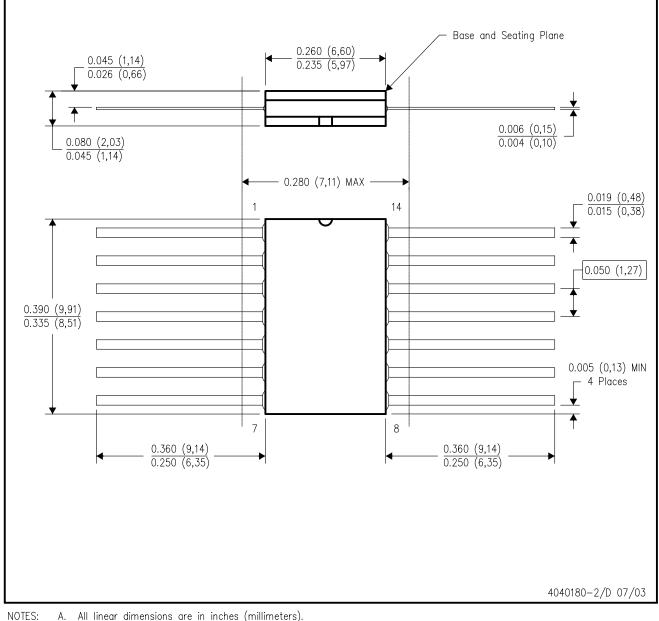

PACKAGE OPTION ADDENDUM

provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



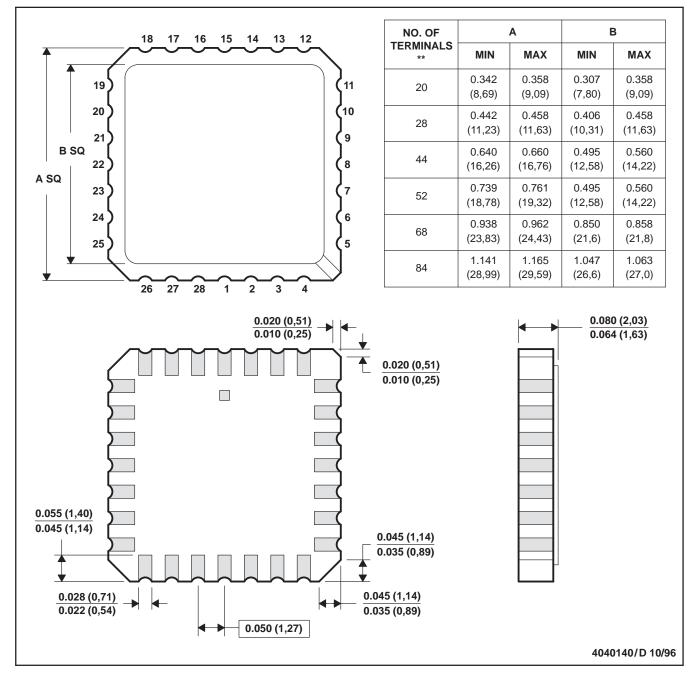
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB



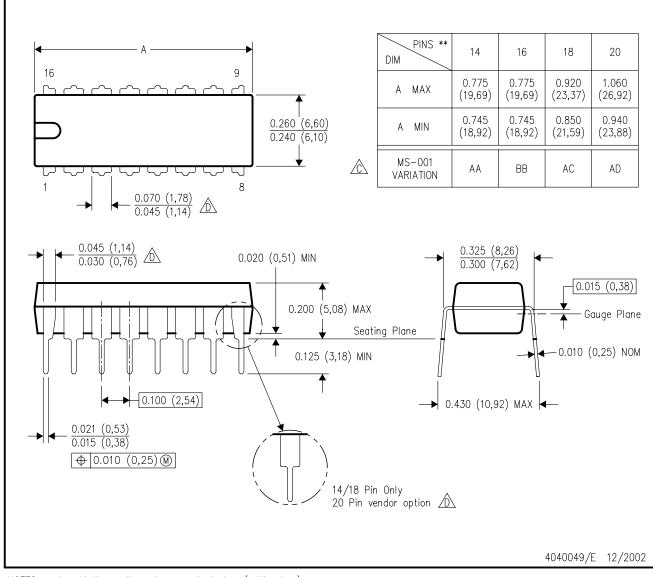
MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

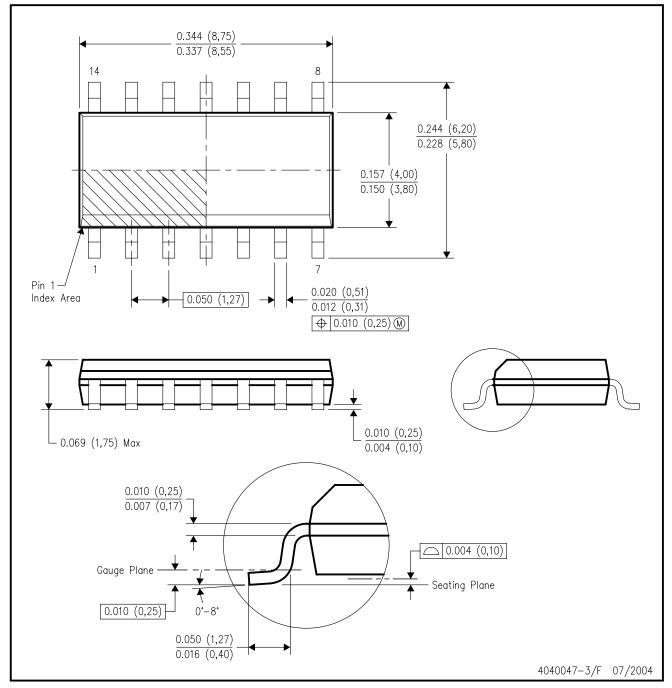
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AB.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

State Decoder

module state_decoder (\$0,\$1,\$2,\$01,\$02,\$03,\$04,\$05,\$06,\$07,\$08); //Declaration port input and output

input S0,S1,S2; // State decoder input signals

output S01,S02,S03,S04,S05,S06,S07,S08; // State decoder outputs

assign S01 = ~S2 & ~S1 & ~S0;	// State output1
assign S02 = ~S2 & ~S1 & S0;	// State output2
assign S03 = ~S2 & S1 & ~S0;	// State output3
assign S04 = ~S2 & S1 & S0;	// State output4
assign S05 = S2 & ~S1 & ~S0;	// State output5
assign S06 = S2 & ~S1 & S0;	// State output6
assign S07 = S2 & S1 & ~S0;	// State output7
assign S08 = S2 & S1 & S0;	// State output8

endmodule // End port declaration

Output Logic

module output_logic(S01,S02,S03,S04,S05,S06,S07,S08,G1,Y1,R1, GL1,G2,Y2,R2,GL2,G3,Y3,R3,GL3,G4,Y4,R4,GL4); // Declaration of input and output output_logic module
input S01,S02,S03,S04,S05,S06,S07,S08; // Declaration input
output G1,Y1,R1,GL1,G2,Y2,R2,GL2,G3,Y3,R3,GL3,G4,Y4,R4,GL4; // Declaration output of output_logic

assign GL1 = S01+S02+S03+S04; // Road1 Green (left-sign) assign G1 = S01; // Road1 Green assign Y1 = S02; // Road1 Yellow assign R1 = S03 + S04 + S05 + S06 + S07 + S08; // Road1 Red assign GL2 = S03 + S04 + S05 + S06; // Road2 Green (left-sign) assign G2 = S03; Road2 Green assign Y2 = S04; // Road2 Yellow assign R2 = S01 + S02 + S05 + S06 + S07 + S08; // Road2 Red assign GL3 = S05 + S06 + S07 + S08; // Road3 Green (left-sign) assign G3 = S05; // Road3 Green assign Y3 = S06; // Road3 Yellow assign R3 = S01 + S02 + S03 + S04 + S07 + S08; // Road3 Red assign GL4 = S01 + S02 + S07 + S08; // Road4 Green (left-sign) assign G4 = S07; // Road4 Green assign Y4 = S08; // Road4 Yellow assign R4 = S01 + S02 + S03 + S04 + S05 + S06; // Road4 Red

endmodule

Trigger Logic

module trigger_logic (S01,S02,S03,S04,S05,S06,S07,S08,Short,Long); // Declaration input
and output
input S01,S02,S03,S04,S05,S06,S07,S08; // Input declaration

output Short,Long; // Output declaration

assign Long = (S01 + S03 + S05 + S07); // Long timer output assign Short = (S02 + S04 + S06 + S08); // Short timer output

endmodule

<u>Combinational Logic (State decoder, output logic & trigger logic)</u> **module** combinational_logic (S0,S1,S2,GL1,G1,Y1,R1,GL2,G2,Y2,R2, GL3, G3, Y3, R3, GL4, G4, Y4, R4, Long, Short); // Module delaration **input** S0,S1,S2; // Input declaration from state decoder **output** GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3,Y3,R3,GL4,G4,Y4,R4; // Declaration output signals **output** Long, Short; // Output timing **wire** w1,w2,w3,w4,w5,w6,w7,w8; // to connect the module state_decoder N1 (S0,S1,S2,w1,w2,w3,w4,w5,w6,w7,w8); // State decoder module output_logic N2 (w1,w2,w3,w4,w5,w6,w7,w8,G1,Y1,R1,GL1,G2,Y2, R2, GL2, G3, Y3, R3, GL3, G4, Y4, R4, GL4); // Output logic module trigger_logic N3(w1,w2,w3,w4,w5,w6,w7,w8,Short,Long); // Trigger module for long and short timer

endmodule

<u>D flip-flop</u>

module D_flipflop (clock, D, Q); // Module declaration – input & output

input D; // Input of D flip-flop

input clock; // Clock input

output Q; // Output of D flip-flop

reg Q; // Register output

always @ (negedge clock) // high went see nededge clock

Q <=D;

endmodule

Input Logic

module input_logic (TS,TL,Vs,Q0,Q1,Q2,D0,D1,D2); //Module declaration
input TS,TL,Vs,Q0,Q1,Q2; // input declaration
output D0,D1,D2; // output declaration

```
assign D0

= ((Q0 & TS) | (~Q1 & ~Q0 & ~TL & Vs) | (Q1 & ~Q0 & ~TL) | (Q1 & ~Q0 & ~Vs)); // output1

assign D1

= ((Q0 & (Q1 ~^ TS)) | (Q1 & ~Q0 & TL & Vs) | (Q1 & ~Q0 & ~TL) | (Q1
```

```
& ~Q0 & ~Vs)); // Output2
```

assign D2

$$= ((Q0 \& ~TS) \& (Q2 ^ Q1) | (Q2 \& Q0 \& TS) | (Q2 \& ~Q0) \& (Q1^ TL) | (Q2 \& ~Q0 \& ~Vs) | (Q2 \& ~Q0 \& ~Vs) \& (Q1 ~^ TL)); // Output3$$

endmodule

Sequential Logic (D flip-flop & input logic)
module sequential_logic (clock,TS,TL,Vs,S0,S1,S2); // Module declaration
input clock; // clock input
input TS,TL,Vs; // declaration sequential logic inputs
output S0,S1,S2; // declaration sequential logic outputs
wire w1,w2,w3; // connection of module

input_logic (TS, TL, Vs, S0, S1, S2, w1, w2, w3); // input logic module
D_flipflop D1 (clock, w1, S0); // first bit counter module
D_flipflop D2 (clock, w2, S1); // second bit counter module
D_flipflop D3 (clock, w3, S2); third bit counter module

endmodule

<u>Combination of Sequential & Combinational Logic</u> **module** sequence_combine (clock,TS,TL,Vs,GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3, Y3,R3,GL4,G4,Y4,R4,Long,Short); // Module declaration **input** clock; // input clock **input** TS, TL, Vs; // input module declaration **output** GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3,Y3,R3,GL4,G4,Y4,R4,Long,Short; // output module declaration **wire** S0,S1,S2; // jumper to connect a modules

> sequential_logic (clock,TS,TL,Vs,S0,S1,S2); // sequential logic module combinational_logic(S0,S1,S2,GL1,G1,Y1,R1,GL2,G2,Y2,R2,GL3,G3,Y3 ,R3,GL4,G4,Y4,R4,Long,Short); // combinational logic module

endmodule