# HARDWARE IMPLEMENTATION OF INTELLIGENT TRAFFIC LIGHT CONTROLLER

NOORRASHIKIN BINTI JAAFAR

SCHOOL OF MICROELECTRONIC ENGINEERING UNIVERSITI MALAYSIA PERLIS 2007

## HARDWARE IMPLEMENTATION OF INTELLIGENT TRAFFIC LIGHT CONTROLLER

by

## NOORRASHIKIN BINTI JAAFAR

Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering



MAY 2007

#### ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to my parents for their support and love which has motivate me through out these hard time. Not forgetting to my adviser, Mr Muammar Mohamad Isa from School of Microelectronics Engineering. They have been a great mentor with their management skills and enthusiasm. They also have been an exceptional role model of life. They have done their best to help relieve concerns that their advisees have. It has been memorable that they encouraged and supported me while I was in deep depression and while I faced problems in completing this project.

Inclined to forget, my special thanks goes to my coordinator project of Electronic Engineering, Mr. Rizalafande Bin Che Ismail who had helped me a lot. Comprehend of his demanding jobs, but he still consumes his times to devote concerned and attention for me.

I also would like thanking to Mr. Ir Shaharuddin Bin Othman, manager of JKR Electric Department and to my entire friend for the knowledge and caring during to finish this project. Not forgetting also to my housemate for their support and commitment.

Lastly I'm also would like to make an apology if during to finish my final project, I have hurts someone's feelings. I am really sorry for any mistakes. Last but not least, I hope UniMAP will become one of the most illustrious universities in the world. Wish all the best to all of you.

#### APPROVAL AND DECLARATION SHEET

This project report titled Hardware Implementation of Intelligent Traffic Light Controller was prepared and submitted by Noorrashikin Bt Jaafar (Matrix Number: 031030353) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electronic Engineering) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by

(MR. MUAMMAR MOHAMAD ISA) Project Supervisor

School of Microelectronic Engineering Universiti Malaysia Perlis

MAY 2007

## MENGAPLIKASIKAN PERKAKASAN PENGAWAL LAMPU ISYARAT PINTAR

#### ABSTRAK

Lampu isyarat pintar pengawal memainkan peranan yang sangat penting dalam pengurusan dan mengawal isyarat dalam bandar bagi mengurangkan kesesakan dan kemalangan di jalan raya. Ia adalah contoh terbaik untuk mengatasi masalah di jalan raya pada masa kini .Kawalan lampu isyarat pintar adalah mesin jujukan yang boleh digunakan untuk menganalisis dan mengaturcara melalui pelbagai proses. Perantiperanti yang terdapat dalam analisis ini adalah merangkumi mesin berjujukan untuk mengawal turutan lampu isyarat, masa yang segerak dan pengenalan kepada operasi sintesis kerlipan lampu isyarat jujukan. .Kaedah yang digunakan dalam projek ini adalah melukis litar, menulis kod aturcara, menganalisis, sintesis dan mengaplikasikan menggunakan perkakasan. Dalam projek ini, perisian QuartussII telah dipilih untuk merekabentuk skematik menggunakan fail skematik, tulis satu pengekodan Verilog HDL (Bahasa penggambaran menggunakan perkakasan) teks dan mengaplikasikan litar menggunakan get logik.

## HARDWARE IMPLEMENTATION OF INTELLIGENT TRAFFIC LIGHT CONTROLLER

#### ABSTRACT

Traffic signal controller is playing more and more important roles in modern management and controls of urban traffic to reduce the accident and traffic jam in road. The traffic light controller is a sequential machine to be analyzed and programmed through a multi step process. The device that involves a analysis of existing sequential machines in traffic lights controllers, timing and syhronization and introduction of operation and flashing light synthesis sequence. The methods that are used in this project are design the circuit, write a coding, simulation, synthesis and implement in hardware. In this project, QuartussII Software was chosen to design a schematic using schematic edit, writes a coding using Verilog HDL (Hardware Description Language) text editor and implements the circuit using gate logic.

#### **TABLE OF CONTENTS**

|                                               | Page |
|-----------------------------------------------|------|
| ACKNOWLEDGEMENT                               | i    |
| APPROVAL AND DECLARATION SHEET                | ii   |
| ABSTRAK                                       | iii  |
| ABSTRACT                                      | iv   |
| TABLE OF CONTENTS                             | v    |
| LIST OF TABLES                                | viii |
| LIST OF FIGURES                               | ix   |
| LIST OF SYMBOLS, ABBREVATIONS OR NOMENCLATURE | xi   |

## **CHAPTER 1 INTRODUCTION**

| 1.1 | Overview              | 1 |
|-----|-----------------------|---|
| 1.2 | Background of Project | 1 |
| 1.3 | Objective of Project  | 2 |

#### **CHAPTER 2 LITERATURE REVIEW**

| 2.1 | Introd                | uction                                                       | 3 |
|-----|-----------------------|--------------------------------------------------------------|---|
| 2.2 | Traffic Light Systems |                                                              | 3 |
| 2.3 | Benefi                | t of Traffic Light Controller                                | 4 |
| 2.4 | Types                 | of Traffic Signals and Operation                             | 5 |
| 2.5 | State I               | Machine Design                                               | 6 |
| 2.6 | Expla                 | nation about Software and Hardware                           | 6 |
|     | 2.6.1                 | Quartuss II Software                                         | 6 |
|     | 2.6.2                 | Benefit of Using Verilog HDL (Hardware Description Language) | 8 |
|     |                       |                                                              |   |

## **CHAPTER 3 METHODOLOGY**

| 3.1 | Introduction                                                     | 9  |
|-----|------------------------------------------------------------------|----|
| 3.2 | Developing a Block Diagram and Interface Signal of Traffic Light | 10 |
|     | Systems                                                          |    |
| 3.3 | Possible Direction of Intelligent Traffic Light Controller       | 11 |
| 3.4 | State Diagram of Traffic Light Controller                        | 15 |
| 3.5 | The Combinational Logic                                          | 17 |
|     | 3.5.1 Implementing the Decoder Logic                             | 18 |
|     | 3.5.2 Implementing the Light Output Logic                        | 20 |
|     | 3.5.3 Implementing the Trigger Logic                             | 21 |
| 3.6 | Timing Circuits Requirement                                      | 25 |
| 3.7 | Sequential Logic                                                 | 27 |

#### **CHAPTER 4 RESULTS AND DISCUSSION**

| 4.1 | Introd | uction                                                    | 32 |
|-----|--------|-----------------------------------------------------------|----|
| 4.2 | Result | t of Combinational Logic                                  | 32 |
|     | 4.2.1  | Result for State Decoder                                  | 32 |
|     | 4.2.2  | Result for Output Logic                                   | 34 |
|     | 4.2.3  | Result for Trigger Logic                                  | 36 |
|     | 4.2.4  | Result of Complete Combinational Logic                    | 37 |
| 4.3 | Result | t of Sequential Logic                                     | 39 |
|     | 4.3.1  | Result for D-flipflop module                              | 39 |
|     | 4.3.2  | Result for Input Logic module                             | 40 |
|     | 4.3.3  | Result of Complete Sequential Logic                       | 41 |
|     | 4.3.4  | The combination of combinational logic and sequence logic | 42 |
| 4.4 | Comp   | lete Combination of Traffic Light Controller              | 44 |
| 4.4 | Discu  | ssion                                                     | 45 |

#### **CHAPTER 5 CONCLUSION**

| 5.1 | Summary                           | 47 |
|-----|-----------------------------------|----|
| 5.2 | Recommendation For Future Project | 48 |

#### REFERENCES

#### APPENDICES

| Appendix A | Inverter/Not (74LS04) data sheet         | 53 |
|------------|------------------------------------------|----|
| Appendix B | 3-to-8 Line Decoder (74LS138) data sheet | 55 |
| Appendix C | 2-input OR (74LS32) data sheet           | 59 |
| Appendix D | 555 Timer data sheet                     | 64 |
| Appendix E | 2-input AND (74LS08/74LS09) data sheet   | 74 |
| Appendix F | 3-input AND (74F11) data sheet           | 76 |
| Appendix G | Exclusive – OR (74LS86) data sheet       | 78 |
| Appendix H | Dual flip-flop (74LS74) data sheet       | 81 |
| Appendix I | The complete program                     | 82 |

51

## LIST OF TABLE

| Tables No. |                                                           | Page |
|------------|-----------------------------------------------------------|------|
| 3.0        | Interface Signal Description For Traffic Light Controller | 10   |
| 3.1        | Truth table for the state decoder logic                   | 19   |
| 3.2        | Truth table for the output logic                          | 23   |
| 3.3        | Truth table for the trigger logic                         | 23   |
| 3.4        | Next-state table for the sequential logic functions       | 29   |

### LIST OF FIGURE

| Figures No. |                                                                           | Page |
|-------------|---------------------------------------------------------------------------|------|
| 2.0         | QuartusII Design Flow [2]                                                 | 7    |
| 3.0         | Flow Chart of traffic light controller program                            | 9    |
| 3.1         | Traffic light control system block diagram                                | 11   |
| 3.2         | Diagram showing an interchange junction traffic light                     | 12   |
| 3.3         | Diagram showing possible pass situation whereby lanes A1,A2,D1 is green   | 13   |
| 3.4         | Diagram showing possible pass situation whereby lanes B1, A1, B2 is green | 13   |
| 3.5         | Diagram showing possible pass situation whereby lanes B1, C1, C2 is green | 14   |
| 3.6         | Diagram showing possible pass situation whereby lanes C1, D1, D2 is green | 14   |
| 3.7         | State diagram showing the 3-bit code sequence                             | 17   |
| 3.8         | Block diagram of the combinational logic                                  | 18   |
| 3.9         | Gate logic diagram for state decoder                                      | 20   |
| 3.10        | The gate logic diagram for Output Logic                                   | 22   |
| 3.11        | The gate logic for timing trigger                                         | 24   |
| 3.12        | The complete combinational logic gate                                     | 24   |
| 3.13        | Combinational logic gate circuit                                          | 25   |
| 3.14        | Block diagram of the timing circuits                                      | 25   |
| 3.15        | Timing circuit                                                            | 26   |

| 3.16 | Block diagram of the sequential logic                           | 27 |
|------|-----------------------------------------------------------------|----|
| 3.17 | Sequence logic diagram                                          | 29 |
| 3.18 | Sequential logic gate circuit                                   | 30 |
| 3.19 | The complete combination                                        | 30 |
| 3.20 | The sequential logic gate                                       | 31 |
| 4.0  | Diagram showing simulation result of module state_decoder       | 33 |
| 4.1  | Diagram showing simulation result of module output_logic        | 35 |
| 4.2  | Diagram showing simulation result of module trigger_logic       | 36 |
| 4.3  | Diagram showing simulation result of module combinational_logic | 38 |
| 4.4  | Diagram showing simulation result of module D-flipflop          | 40 |
| 4.5  | Diagram showing simulation result of module input_logic         | 41 |
| 4.6  | Diagram showing simulation result of module sequential_logic    | 42 |
| 4.7  | Combination of combinational logic and sequence logic           | 43 |
| 4.8  | Signal light function for state 6                               | 44 |
| 4.9  | Signal light function for state 8                               | 45 |

## LIST OF SYMBOLS, ABBREVATIONS OR NOMENCLATURE

| Tw   | Time width                                                       |
|------|------------------------------------------------------------------|
| R    | Resistance                                                       |
| С    | Capacitance                                                      |
| HDL  | Hardware Description Language                                    |
| FPGA | Field Programmable Gate Array                                    |
| SOPC | system-on-a-programmable-chip                                    |
| AHDL | Altera Hardware Description Language                             |
| VHDL | (VHSIC – Very High Speed Integrated Circuit Hardware Description |
|      | Language)                                                        |
| IC   | Integrated Circuit                                               |