-NL ARJUNA BIN MARZUKI DESIGN OF SUBSYSTEMS FOR MULTIBAND WIRELESS TRANSCEIVER

ARJUNA BIN MARZUKI

this term is protected by or this item is protected by or this item is protected by the second secon DESIGN OF SUBSYSTEMS FOR MULTIBAND WIRELESS TRANSCEIVER

DESIGN OF SUBSYSTEMS FOR MULTIBAND WIRELESS TRANSCEIVER

Sites the steel of In fulfilment of the requirements for the degree of

> **School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS**

DECLARATION OF THESIS

Author's full name : ... ARJUNA BIN MARZUKI (0640110116)..... Date of birth : ...4th OCTOBER 1975..... Title : ... DESIGN OF SUBSYSTEMS FOR MULTIBAND WIRELESS TRANSCEIVER Academic Session : I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as : CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* RESTICTED (Contains restricted information as specified by the organization where research was done)* OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text) I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of _____ years, if so requested above Certified by: SIGNATURE SIGNATURE OF SUPERVISOR NAME OF SUPERVISOR (NEW IC NO. / PASSPORT NO.) Date : Date : _____

ACKNOWLEDGEMENTS

First of all I would like to thank Professor Ali Yeon Md. Shakaff and Profesor Madya Zaliman Sauli for their guidance and insight in seeing this thesis through. I would also like to thank certain people in my last and current employment for their valuable assistance especially with their skills in RF measurement techniques.

Thank to School of Microelectronic Engineering, the dean and the administration staffs in supporting my work.

Next I would like to thank my friends, who support me throughout this work. These people are my former colleagues in Avago Technologies; Zulfa, on helping the LNA and MPA development and C-Rad Tecgnologies: Radzi, on moral support.

Thank to my student, Khor Teng Teng in helping me in the simulation of the CMOS VCOs and switch.

I would also like to thank the support and acknowledge the support of Telekom R&D Malaysia Sdn. Bhd. (Project number R05-0607-0, lead by Dr. Ahmad Ismat Abdul Rahim) and Agilent Technologies in the fabrication and measurement of the design.

Next I would like to thank Universiti Sains Malaysia, School of Electrical and Electronic Engineering, my current employer, especially the dean, the administration staffs and colleagues for supporting this endeavor.

Lastly, I would like to thank to my beloved wife and daughter, my parents and brothers for their full support throughout the years. I sincerely dedicated this work to my late brother who has been a very good brother throughout his life. I pray to Almighty for forgiveness and mercy for my humble and simple brother.

iii

TABLE OF CONTENTS

CHAPTER TWO : DESIGN CONSTRAINTS OVERVIEW OF HIGH FREQUENCY INTEGRATED CIRCUITS

2.0	Introduction	6
2.1	Receiver Types	9
	2.1.1 Superheterodyne Receiver	9
	2.1.2 Direct-Conversion Receiver(DCR)	11
	2.1.3 Low-IF Receiver	14
	2.1.4 Wide-band IF Receiver	16
2.2	Issues in Receiver Topologies	17

	2.2.1 Flicker Noise	17
	2.2.2 Even-Order Distortion	18
	2.2.3 LO Leakage	19
2.3	Comparison on the Receiver Architectures	20
2.4	I/Q Demodulator	23
	2.4.1 Mixer Theory	25
	2.4.2 Oscillator	31
	2.4.2.1 Tank Circuit	32
	2.4.3 Voltage Reference Circuit	33
	2.4.4 Current Reference Circuit	34
	2.4.5 Frequency Divider	36
	2.4.5.1 Analog Frequency Divider	36
	2.4.5.2 Digital Frequency Divider	37
	2.4.5.2.1 Synchronous and Asynchronous	38
	2.4.5.3 Divide by 2 Circuit	38
2.5	Design Flow	39
2.6	MOSFET as a Switch	41
	2.6.1 NMOS Switch	41
	2.6.2 Transmission Gate	43
	2.6.3 Charge Injection	44
	2.6.4 NMOS Switch-Design Issues and Discussion	45
2.7	Shunt Feedback Amplifier	47
	2.7.1 Shunt Feedback S-Parameter Analysis	48
2.8	Summary	52

	2.8	Summary	52
	is)		
	СНА	PTER THREE : DESIGN METHODOLOGY	
	2.0	Introduction	52
0	3.0 3.1	PACB	53
	3.2	LNA, MPA and Broadband Amplifier Circuits Theory	56
		3.2.1 Low Noise Amplifiers	57
		3.2.1.1 High Frequency Core Circuit	57
		3.2.1.2 High Frequency Core Circuit S-Parameter Analysis	58
		3.2.1.2 LNA Design	59
		3.2.2 Medium Power Amplifiers	59

	3.2.3 E	Broadband Amplifier	60
3.3	Multib	and Demodulator	63
	3.3.1	The I/Q Mixer Design	63
	3.3.1	I.1 Voltage Gain	64
	3.3.1	1.2 Mixer Noise	65
	3.3.1	1.3 Linearity	65
	3.3.2	The LO-Divider Design	67
	3.3.2	2.1 Master Slave D Flip Flop (MSDFF) Design (divide-by-2)	68
	3.3.2	2.2 MSDFFs (Tied Collectors)	69
	3.3.3	Clock Buffer Amplifier Design	70
	3.3.4	VCO Buffer Amplifier Design	71
	3.3.5	VCS Circuit Design	73
	3.3.5	5.1 VCS Design Theories	73
3.4	Variab	le Signal Generator	79
	3.4.1	Active Oscillators Design Methodology	79
	3.4.2	Switch-Series Shunt Topology	81
	3.4.3	Oscillator Design – Cross-coupled LC oscillator	82
	3.4.4	Design Issues and Discussion	84
3.5	Summ	ary	86

CHAPTER FOUR: LOW NOISE AMPLIFIER, MEDIUM POWER AMPLIFIER AND BROADBAND AMPLIFIER

	Introduction	87	
	4.1	Transistor Characterization	88
		4.1.1 Experimental	88
	4.2	Core Circuit Design	92
\bigcirc		4.2.1 Parasitic Aware in the Core Circuit	92
	4.3	LNA Design	93
	4.4	Medium Power Amplifier Design	96
	4.5	Broadband Amplifier Design	98
		4.5.1 Transistor Size Determination	98
	4.6	Summary	103

CHAPTER FIVE: MULTIBAND DEMODULATOR AND VARIABLE SIGNAL GENERATOR

5.0	Introduction	104
5.1	Multiband Demodulator	105
	5.1.1 The I/Q Mixer Design	106
	5.1.1.1 Voltage Gain	107
	5.1.1.2 The Mixer Noise	108
	5.1.1.3 The Linearity	108
	5.1.2 LO Divider Design	109
	5.1.2.1 Negative Resistance Circuit Design	111
	5.1.2.2 Master Slave D Flip Flop (MSDFF) Design	112
	5.1.2.3 MSDFFs (Tied Collectors) Master Slave D Flip Flop	114
	5.1.2.4 Clock Buffer Amplifier Design	115
	5.1.2.5 VCO Buffer Amplifier Design	116
	5.1.3 Control and Bias Circuits Design	117
	5.1.3.1 Control Circuit Design	117
	5.1.3.2 VCS Circuit Design	120
	5.1.4 Input Shifter	121
5.2	Variable Signal Generator	123
	5.2.1 Oscillator Design- Cross-coupled LC oscillator	123
•)	5.2.1.1 Calculation	124
	5.2.2 Control Signal	126
J?	5.2.3 Biasing Circuit	127
	5.2.4 Output Buffer	128
5.3	Summary	129

CHAPTER SIX : RESULTS OF LNA, MPA, BROADBAND AMPLIFIER, MULTIBAND DEMODULATOR AND VARIABLE SIGNAL GENERATOR

6.0	Introduction	130
6.1	Simulation Results	130
	6.1.1 Core Circuit	130

6.1.2 LNA	131
6.1.3 MPA	133
6.1.4 Broadband Amplifier	134
6.1.5 Variable Signal Generator	138
6.1.5.1 Simulation Result of Series-Shunt NMOS Switch	139
6.1.5.2 Simulation Result of Cross-Coupled LC Oscillators	140
6.1.5.3 Simulation Result of Variable Signal Generator	143
6.1.5.3.1 Integration of Single Oscillator and Switch	143
6.1.5.3.2 Integration of Three Oscillators	147
6.1.6 Simulation Results of Multiband Demodulator	153
6.1.6.1 Mixer Simulation Results	153
6.1.6.2 LO-Divider Simulation Results	155
6.1.6.3 Buffer Amplifiers Simulation Results	159
6.1.6.4 Control and Bias Circuits Simulation Results	161
6.1.6.5 The I/Q Demodulator Simulation Results	165
6.1.6.6 Post Layout Simulation	170
6.2 Experimental Results	172
6.2.1 Core Circuit	172
6.2.2 LNA	174
6.2.3 MPA	177
6.2.4 Multiband Demodulator	180
6.2.4.1 Introduction	180
6.2.4.2 Output signal	180
6.2.4.3 VCO	181
6.2.4.4 I and Q Gain Imbalance	182
6.2.4.5 I and Q Phase Imbalance	183
6.2.4.6 Error Vector Magnitude	184
6.2.4.7 Discussion	185

CHAPTER SEVEN : CONCLUSIONS AND FUTURE WORK

7.0	Conclusions	187
7.1	Future Work	190

REFERENCES	191
APPENDICES	201
Appendix A1 W-CDMA Receiver Specification	202
Appendix A2 I/Q Demodulator Specification	206
Appendix A3 High Frequency Core Circuit Analysis	210
Appendix A4 Ideal Fully Balanced Mixer	215
Appendix A5 Differential Amplifier (diffamp)-RF core of Mixe	218
Appendix A6 Layout Diagram of I/Q Demodulator	229
the tempore de la company de l	

Table Page 2.1 Comparison on the Capabilities of the Different Receiver Architectures 21 (Pärssinen, 2001) 2.2 Truth Table of Divide by 2 37 102 4.1 Synthesis Setup of Design Variables 5.1 122 Hand Analysis vs. Specification 124 5.2 Model Parameters 5.3 Physical Design Parameters for LO1, LO2 and LO3 125 2. 4 GHz LNA Simulation Results and Components Value 6.1 132 6.2 3. 5 GHz LNA Simulation Results and Components Value 133 2. 4 GHz MPA Simulation Results and Components value 6.3 133 6.4 3. 5 GHz MPA Simulation Results and Components value 134 Synthesis Setup of Design Variables 6.5 134 6.6 ¹Optimized Design Variables of Power Constrained and ²Non Power 135 Constrained 6.7 Broadband Amplifiers, *Non Power-Constrained 136 Properties of Control Signal Input sources 6.8 138 6.9 Calculated and Optimized Physical Design Parameters of Local 141 Oscillators Performance of Local Oscillators. 141 6.10 Optimized Design Parameters after Integration of Oscillator and 6.11 145 Switch Final Design Parameters of VSG 152 6.12 6.13 Performance Summary of VSG 152 6.14 Summary of the performance and comparison to other UWB LO 152 Generation system 170 6.15 Simulation vs. Analysis vs. Specification 6.16 Real Performance vs. Specification vs. Analysis vs. Schematic 185 Simulation

LIST OF TABLES

6.17	Summary of Demodulator	the	performance	and	comparison	to	other	I/Q	186
A2.1	I/Q Demodulate	or Sp	ecifications Cal	culatio	on Results				208
A2.2	Other I/Q Dem	odula	tor Specificatio	ns					208
	enisp	0	ctedo	0		. <u>o</u>	Pyri	ett	

LIST OF FIGURES

	Figure		Page
	2.1	Basic Architecture of a Radio Transceiver	8
	2.2	A Typical Superheterodyne Receiver with a Quadrature Demodulator (Zou <i>et al.</i> , 2004; Ryynanen, 2004)	9
	2.3	A Direct-Conversion Receiver (Springer <i>et al.</i> , 2002; Zou <i>et al.</i> , 2004; and Ryynanen, 2004)	11
	2.4	Block Diagram of Low-IF Receiver (Pärssinen, 2001)	14
	2.5	Block Diagram of the Wide-Band IF Receiver (Pärssinen, 2001)	16
	2.6	A Basic Block diagram of an I/Q Demodulator	23
	2.7	A Generic I/Q Demodulator for Radio Receiver	24
	2.8	Basic Mixer Block Diagram	25
	2.9	Diode Ring Mixer	26
	2.10	Square Law Mixer	26
	2.11	Triode Mixer	27
	2.12	Dual-Gate MOSEET Mixer	27
	2.13	Quadratic Mixer	28
	2.14	Bipolar Single-Balanced Mixer	29
	2.15	Double-Balanced Mixer	30
	2.16	Negative g _m Circuit	31
•	2,17	Small Signal Equivalent Circuit	31
	2.18	A Typical Tank Circuit	33
\bigcirc	2.19	Zener Referenced Circuit	35
	2.20	Block Diagram of Frequency Divider	36
	2.21	A Classic Analog Frequency Divider	36
	2.22	Block Diagram of Divide by 2	37
	2.23	Synchronous Divide by 4 Divider	38
	2.24	Asynchronous Divide by 4 Divider	38
	2.25	D-Latch	39

	2.26	Typical MMIC Design Flow	41
	2.27	Symbol of NMOS transistor	42
	2.28	Transmission Gate	43
	2.29	Charge Injection when the Switch turns Off	44
	2.30	Transient Response of Single NMOS Switch	45
	2.31	Model of Non-Ideal Switch	46
	2.32	NMOS Switch with Parasitic Capacitance	46
	2.33	Shunt Feedback Amplifier	47
	2.34	Shunt Feedback Amplifier with Test Current, Iin	48
	2.35	Circuit to Define Gain	49
	2.36	Circuit to Explain S ₁₁ - Gamma In relationship	50
	2.37	Circuit to Explain S ₂₁	51
	3.1	Typical MMIC Design Flow	55
	3.2	Proposed Design Flow	56
	3.3	Basic Core Circuit	57
	3.4	LNA Circuit for 2.4 GHz and 3.5 GHz	58
	3.5	Single-Ended Medium Power Amplifier for RF Frequency of 2.4 GHz and 3.5 GHz.	60
	3.6	Two Stage RC Feedback Amplifier	62
•	3.7	Mixer	63
	3.8	LO-Divider Block Diagram.	67
\bigcirc	3.9	The Block Diagram of Divide by 2 and Divide by 4	68
	3.10	The Divide by 2 Circuit	68
	3.11	MSDFFs (Tied Collectors) Concept	69
	3.12	Clock Buffer Amplifier Circuit	70
	3.13	VCO Buffer Amplifier	72
	3.14	VCO Design	73
	3.15	VCS Block Diagram and Current Source	74

	3.16	Simplified VCS with Current Source	76
	3.17	Simplified IPTAT Current Circuit	77
	3.18	VCS Circuit	78
	3.19	Block Diagram of Active Oscillator Solution	80
	3.20	Schematic of Series-Shunt Switch	81
	3.21	Cross-Coupled Oscillator with NMOS Current Source (Razavi, 2001)	83
	3.22	Equivalent Circuit of Series-Shunt Switch when It is Turned On or Off.	84
	3.23	Modified Series-Shunt Switch	85
	3.24	Block Diagram of Variable Signal Generator	86
	4.1	200 μm and 1000 μm Width Transistors	88
	4.2	C _{GS} vs. Width of Transistors	89
	4.3	200 $\mu m,$ 400 $\mu m,$ 600 μm and 1000 μm Width Transistors $G_m,$ Drain Current vs. $V_{GS}.$	90
	4.4	Normalized G_m , Drain Current vs. V_{GS}	91
	4.5	Core Circuit	92
	4.6	Parasitic Aware in the Core Circuit	93
	4.7	2.4 GHz and 3.5 GHz LNA	93
	4.8	2.4 GHz LNA	94
	4.9	3.5 GHz LNA	95
	4.10	Simulation Schematic of the PHEMT Single-Ended Medium Power Amplifier for RF Frequency of 2.4 GHz and 3.5 GHz.	96
\bigcirc	4.11	2.4 GHz MPA Circuit	97
\bigcirc	4.12	3.5 GHz MPA Circuit	97
	4.13	Transistor Simulation Bench	98
	4.14	Reverse Transmission (S12) vs. Frequency (V_{DD} = 1.5 V, V_{GS} = 0 V, UGW = 50 $\mu m)$	99
	4.15	S ₂₁ vs. Frequency	99
	4.16	Two Stage RC Feedback Amplifier Simulation Setup	101

	4.17	Goals and Optimization	102
	5.1	Multiband I/Q Demodulator	105
	5.2	Final Mixer	106
	5.3	LO-Divider Block Diagram	109
	5.4	The Block Diagram of Divide by 2 and Divide by 4	110
	5.5	The Negative Resistance Circuit	111
	5.6	MSDFF	113
	5.7	MSDFFs (Tied Collectors)	114
	5.8	Clock Buffer Amplifier Circuit	115
	5.9	VCO Buffer Amplifier	116
	5.10	Basic PTAT Circuit	118
	5.11	Control Circuit	119
	5.12	VCS Circuit	120
	5.13	Emitter Follower Circuit at the Input of IC	121
	5.14	Cross-Coupled Oscillator with NMOS Current Source	123
	5.15	Block Diagram of Full Variable Signal Generator	126
	5.16	Control Voltage Pulses	127
	5.17	Biasing Circuit	127
	5.18	Source Follower	129
	5.19	Source Follower Frequency Response	129
	6.1	Comparison Between Parasitic Aware Approach Simulation and Circuit Simulation Results	131
	6.2	Mu_load and Mu_source vs. Frequency	131
	6.3	Mu_load and Mu_source of the Amplifier	136
	6.4	S ₂₁ vs Frequency	137
	6.5	Noise Figure vs Frequency	137
	6.6	Transient Response of Series-Shunt NMOS Switch with L = 1 μ m	139
	6.7	Transient Response of Series-Shunt NMOS Switch with L = 0.18 μ m	139

	6.8	Transient Response	142
	6.9	Fundamental Frequency	142
	6.10	Magnitude and Frequency of LO1	142
	6.11	Transient Response of LO1 Connected to Switch	143
	6.12	Transient Response of Output Signal from Oscillator	144
	6.13	Smooth Transition of Transient Response	144
	6.14	Constant Amplitude of Oscillator's Output Signal, with Modified Differential Series-Shunt Switch	145
	6.15	Transient Response of First Signal Generator	146
	6.16	Frequency and Amplitude of the First Signal Generated	146
	6.17	Transient Response of VSG	147
	6.18	Signal Generated from VSG	148
	6.19	Closer Look of Signal Generated	148
	6.20	Spectrum Frequency of First Frequency Generated	149
	6.21	Spectrum Frequency of Second Frequency Generated	150
	6.22	Spectrum Frequency of Third Frequency Generated	151
	6.23	Conversion Gain vs Input Power	153
	6.24	Differential Output Power vs. Input	154
	6.25	Noise Figure vs. Frequency	154
•	6.26	LO Divider Performance at 100° C, VCC = 3.6 V	155
\sim	6.27	LO Divider Performance at -40° C, VCC = 2.7 V	156
	6.28	Phase Noise of VCO vs. Frequency	157
	6.29	VCO Simulation Schematic	158
	6.30	Clock Buffer Results	159
	6.31	VCO Output Voltage vs. Frequency	160
	6.32	Output Current of Bias Control vs. Temperature	161
	6.33	Output Current of Current Sources vs. Temperature	162
	6.34	Output Current of Bias Control cell vs. Time	163

	6.35	Output of Current Sources vs. Time	163
	6.36	Inverter Simulation Schematic	164
	6.37	Inverter Output vs. Input Characteristics	165
	6.38	DC Simulation Results vs. Temperature	166
	6.39	DC Simulation Results vs. VCC	166
	6.40	Conversion Gain (I)	167
	6.41	Conversion Gain (II)	168
	6.42	Conversion Gain (III)	168
	6.43	Spurious Output, Conversion Gain and IIP3 at Different Frequency	169
	6.44	IIP3 vs. VCC, vs. Temperature and Process Corners	169
	6.45	DC Simulation Results with Parasitic Capacitance	171
	6.46	Output Voltage Simulation Results with Parasitic Capacitance	172
	6.47	Core Circuit Microphotograph	173
	6.48	Simulation and Measurement Results of Core Circuit	173
	6.49	Die Photo of the 2.4 GHz LNA	174
	6.50	Die Photo of the 3.5 GHz LNA	175
	6.51	S-Parameters of 2.4 GHz LNA	175
	6.52	S-Parameters of 3.5 GHz LNA	176
	6.53	Die Photo of the 2.4 GHz MPA	177
	6.54	Die Photo of the 3.5 GHz MPA	177
\bigcirc	6.55	S-Parameters of 2.4 GHz MPA	178
	6.56	S-Parameters of 3.5 GHz MPA	179
	6.57	Output Signal	180
	6.58	VCO Output vs. Frequency	181
	6.59	I and Q Amplitude Imbalance vs. IF Frequency	182
	6.60	I and Q Phase Imbalance vs. IF Frequency	183
	6.61	EVM	184

	A2.1	Typical Receiver	206
	A3.1	Core Circuit with Voltage Source, V_{IN}	210
	A3.2	Equivalent of Transistor with Noise Sources	211
	A3.3	Equivalent of Transistor with V _i	212
	A3.4	Shunt Feedback Amplifier with Noisy Transistor	213
	A3.5	Shunt Feedback Amplifier with Equivalent Noise Sources	213
	A3.6	Shunt Feedback Amplifier with Equivalent Noise Sources and Termination for Noise Figure Calculation	214
	A4.1	A Unit Square Wave	215
	A4.2	Ideal Mixer Output Spectrum	216
	A5.1	Degenerated Differential Amplifier	218
	A5.2	Differential-Mode Equivalent Half Circuit	220
	A5.3	Small-Signal Equivalent Circuit of the Differential-Mode Equivalent Half Circuit	221
	A5.4	Noise Representation of a Transistor at High Frequency	222
	A5.5	Conventional Noise Representation	223
	A5.6	Noise Factor Representation	224
	A5.7	Basic Block Diagram of a Feedback System	225
	A6.1	Mixer Layout	229
	A6.2	Negative Resistance Circuit Layout	230
	A6.3	MSDFF Layout	231
	A6.4	MSDFFs (tied collectors) Layout	232
\bigcirc	A6.5	Clock Buffer Amplifier Layout	233
	A6.6	VCO Buffer Amplifier Layout	234
	A6.7	VCSL Layout	235
	A6.8	VCSH Layout	236
	A6.9	Control Circuit Layout	237
	A6.10	Standard Bondpad	238

onthis term is protected by original convitable

LIST OF SYMBOLS

	Ω	Ohm
	γ	Noise parameter, γ = 2/3 for long-channel
	δ	Coefficient of gate noise, $\delta = 2\gamma = 4/3$ for long-channel
	α	Noise parameter, $\alpha = g_m / g_{d0}$
	Γ	Reflection coefficient
	Γ_{S}	Reflection coefficient looking into the source
	Γ_{in}	Reflection coefficient looking into the input
	Γ_{L}	Reflection coefficient looking into the load
	Γ_{out}	Reflection coefficient looking into the output
	μ _n	Mobility of electron
	μ_{p}	Mobility of hole
	ξ	Noise parameter of the uncorrelated portion of the transistor's gate noise
	ξı	V_{DS} to V_{OV} ratio
	к	Noise parameter of the correlated portion of the transistor's gate noise
	x	Noise parameter that includes both correlated and uncorrelated portions of the transistor's gate noise
•	ρ	ho = V _{ov} /LE _{sat}
Ń	ε	Permittivity of free space, $\epsilon_0 = 8.854 \times 10^{-12}$ F/m
	λ	Wavelength of the frequency of operation
	A _d	Area drawn
	A _v	Voltage gain
	A _{vo}	Open-circuit voltage gain
	B _c	Correlation susceptance
	B _{opt}	Optimum susceptance
	B _S	Source noise susceptance

	B _{system}	System bandwidth
	С	Correlation coefficient, c = j0.395 for long-channel devices
	C _a	Areal capacitance
	C _c	Coupling capacitor
	C_{db}	Drain-Body capacitance
	C _f	Feedback capacitor
	C_{gd}	Gate-Drain capacitance
	C _{gs}	Gate-Source capacitance
	C_{gsn}	Gate-Source capacitance of NMOS
	C_{gsp}	Gate-Source capacitance of PMOS
	C_{gsT}	Total Gate-Source capacitance
	Clight	Speed of light, $c_{light} = 3 \times 10^8 \text{ m/s}$
	C _{ox}	Oxide capacitance of NMOS
	C _{oxn}	Oxide capacitance of PMOS
	C _{oxp}	Oxide capacitance
	C _p	Capacitance per unit periphery
	C _t	Total capacitance
	d	Largest dimension of the design
•	E	Average bit energy
	$(E_b/N_t)_{eff}$	Average bit energy to noise and interference power spectral density minimum ratio
	Ec	Average energy per PN chip
	$\overline{\mathbf{e}_{n}}$	External voltage noise generator
	E _{sat}	Field strength at which the carrier velocity has dropped to one half the value extrapolated at low-field mobility
	f	Frequency
	F	Noise factor
	f _{block}	Frequency of the block signal

	fcw	Spurious response frequencies
	f _{IF}	Frequency of the IF Signal
	\mathbf{f}_{LO}	Frequency of the LO Signal
	F _{min}	Minimum noise factor
	F _{min} °	Minimum noise factor for the classical noise matching input stage of the LNA
	f _{RF}	Frequency of the RF signal
	f _T	Transition frequency
	F _{uw}	Frequency of unwanted signal
	F _{UW1} (CW)	Frequency of the first unwanted signal of the CW nature
	F_{UW2} (Modulated)	Frequency of the second unwanted signal of the modulated nature
	f _{wanted}	Frequency of the wanted signal
	Gc	Correlation conductance
	g _{d0}	Drain-Source conductance at 0 V _{DS}
	G _f	Conductance of C _f
	g _g	Real, noiseless conductance in the gate circuit
	gm	Transconductance of the transistor
	G _m	Transconductance of the circuit
	g _{mb}	Body-effect transconductance of the MOSFET
	G _m -C	Transconductance-Capacitor
	G _{m_eff}	Effective transconductance of the circuit
	g _{mT}	Total transconductance
	G _n	Conductance contributing to thermal noise due to $\overline{i_{\rm n}^2}$
	G _{opt}	Optimum conductance
	G _s	Conductance contributing to thermal noise due to $\overline{i_s^2}$ or source conductance
	Iblocking (CW)	Blocking signal (CW) band power spectral density