
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2011, Article ID 420369, 8 pages
doi:10.1155/2011/420369

Research Article

FPGA Implementation for GMM-Based Speaker Identification

Phaklen EhKan,1, 2 Timothy Allen,1 and Steven F. Quigley1

1 School of Electronic, Electrical and Computer Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2 School of Computer and Communication Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia

Correspondence should be addressed to Phaklen EhKan, plen07@yahoo.co.uk

Received 2 June 2010; Revised 26 September 2010; Accepted 6 November 2010

Academic Editor: Gustavo Sutter

Copyright © 2011 Phaklen EhKan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In today’s society, highly accurate personal identification systems are required. Passwords or pin numbers can be forgotten or
forged and are no longer considered to offer a high level of security. The use of biological features, biometrics, is becoming widely
accepted as the next level for security systems. Biometric-based speaker identification is a method of identifying persons from their
voice. Speaker-specific characteristics exist in speech signals due to different speakers having different resonances of the vocal tract.
These differences can be exploited by extracting feature vectors such as Mel-Frequency Cepstral Coefficients (MFCCs) from the
speech signal. A well-known statistical modelling process, the Gaussian Mixture Model (GMM), then models the distribution of
each speaker’s MFCCs in a multidimensional acoustic space. The GMM-based speaker identification system has features that make
it promising for hardware acceleration. This paper describes the hardware implementation for classification of a text-independent
GMM-based speaker identification system. The aim was to produce a system that can perform simultaneous identification of
large numbers of voice streams in real time. This has important potential applications in security and in automated call centre
applications. A speedup factor of ninety was achieved compared to a software implementation on a standard PC.

1. Introduction

Speaker recognition is an important branch of speech
processing. It is the process of automatically recognizing who
is speaking by using speaker-specific information included in
the speech waveform. It is receiving increasing attention due
to its practical value and has applications ranging from police
work to automation of call centers. Speaker recognition can
be classified into speaker identification (discovering identity)
and speaker verification (authenticating a claim of identity).
A closed-set speaker identification system selects the speaker
in the training set who best matches the unknown speaker.
Open-set speaker identification allows for the possibility that
the unknown speaker may not exist in the training set;
thus, an additional decision alternative is required for the
unknown speaker who does not match any of the models in
the training set [1].

Reconfigurable computing systems use reconfigurable
hardware to augment a CPU-based system. The application
is decomposed into parts running on the CPU and parts
running on the reconfigurable hardware, which is used

to form a custom hardware accelerator for the portions
of the algorithm that are capable of benefitting from
massive fine-grained parallelism. The most common type of
reconfigurable hardware device is the Field Programmable
Gate Array (FPGA). An FPGA consists of logic gates whose
functionality is customizable at run time. The connections
between the logic gates are also configurable. The program
that indicates the functionality of each gate and each switch
state is called a configuration.

Traditionally, most speaker identification systems have
been based on software running on a single microprocessor.
The problem with software is that its sequential operation
means that it can be slow for high throughput real time signal
processing applications. Improvements in FPGA technology
and design tools have recently introduced a new option for
Digital Signal Processing (DSP) applications that require
high performance and low development costs. Recent FPGAs
have a very high logic capacity and contain embedded
Arithmetic Logic Units (ALUs) to optimize signal processing
performance. The newest generations of design tools offer
libraries of common DSP functions, enabling developers

2 International Journal of Reconfigurable Computing

Training
Model Stored speaker

models

Models

ClassificationFeature
extractionInput speech

xt
Speaker #ID

Figure 1: Top-level structure of speaker identification system.

FFT
Mel warp

and logarithm

DCT
Mean

removal Delta

Hamming
window

xt

Figure 2: MFCC feature extraction block diagram.

to implement complex systems within a reasonable space
of time. FPGAs have been used in many areas to acceler-
ate algorithms that can make use of massive parallelism,
improving flexibility and reducing costs as well as time to
market. FPGAs are able to exploit pipelining and parallelism
in a much more thorough way that can be done with
parallel computers using general-purpose microprocessors
or a single standard processor.

To date, most attempts to apply FPGA processing to
speech problems have focused on the problem of speech
recognition [2–6], in which an acoustic speech signal is
converted to a text representation of what the speaker has
said. Some researchers have been motivated by the desire to
achieve a large speedup over real time in order to accelerate
searches of multimedia databases. For example [6] demon-
strated a 17× speedup over real time whilst maintaining
good recognition accuracy. Other researchers have aimed
to achieve real-time recognition performance comparable
to that of a standard microprocessor, but at much lower
power dissipation. For example [5] demonstrated a 10×
improvement in total energy dissipation over a system based
on a TMS320VC5416 DSP for real time recognition tasks.

Relatively few researchers have investigated the prob-
lem of hardware implementation of speaker identification,
and these have not aimed to achieve large speedups of
performance, but instead to achieve identification using
hardware of lower cost than a standard computer system. The
speaker identification hardware of [7] achieved performance
comparable to that of a Pentium IV computer for a single-
voice stream, but using only 24% of the resources of a low-
cost Spartan 3 2000 FPGA.

This paper presents results for the implementation of
speaker identification classification on a platform consisting
of an Alpha Data RC2000 PCI card equipped with a
single Xilinx Virtex-II XC2V6000 FPGA. The goal was to
achieve a system that can process a large number of voice
streams simultaneously in real time. The design instantiates a

number of parallel computation units within the FPGA and
multiplexes the speech recognition data through these units.
The higher the FPGA capacity, the more parallel units can be
instantiated, and the fewer multiplex cycles are needed. The
design is, therefore, well placed to benefit from the increasing
logic resources offered by new generations of FPGAs.

2. Speaker Identification System

The block diagram shown in Figure 1 is the top-level struc-
ture of the system designed to implement text-independent
speaker identification. The input speech is sampled and
converted into digital format. Feature vectors are extracted
from the input speech in the form of Mel-Frequency Cepstral
Coefficients (MFCCs) [8]. The system then branches into
two separate phases: training and classification. In the train-
ing phase, each registered speaker has to provide samples of
their speech so that the system can train reference models
for that speaker, whilst in the classification phase the input
speech is matched with the stored reference models and the
identification is made.

2.1. Feature Extraction. The purpose of feature extraction is
to convert the speech waveform to a set of features for further
analysis. The speech signal is a slowly time-varying signal
and when it is examined over a sufficiently short period of
time, its characteristics are fairly stationary, whilst over long
periods of time the signal characteristics change to reflect
the different speech sounds being spoken. In many cases,
short-time spectral analysis is the most common way to
characterize the speech signal. Several possibilities exist for
parametrically representing the speech signal for the speaker
identification task, such as MFCCs, Linear Prediction Coding
(LPC), and others. In this work, MFCCs are chosen because
they are based on the perceptual characteristics of the human
auditory system [9, 10].

International Journal of Reconfigurable Computing 3

Frame size

Shared data
N −N0
samples

Frame i · · ·· · ·

Hamming window

Frame i − 1

Frame i + 1

Figure 3: Hamming window technique for speech framing.

Figure 2 shows a block diagram of the MFCC feature
extraction. The input to the system is speech sampled at
16 kHz and converted to 16-bit digital format. The digital
speech signal is then applied to a 20 ms hamming window
every 10 ms which is blocked into frames of N = 256
samples, with adjacent frames being overlapped by (N −
N0) = 128 samples. The first frame consists of the first N
samples. The second frame begins N0 samples after the first
frame, and overlaps it by N − N0 samples and so on. Each
individual frame is windowed so as to minimize the signal
discontinuity at the beginning and end of each frame as
shown in Figure 3.

The Fast Fourier Transform (FFT) converts each frame of
samples from the time domain into the frequency domain.
The frequency scale is then converted from the hertz to
the mel-scale [8] using filter banks with frequency spaced
linearly at low frequencies and logarithmically at high
frequencies, and the logarithm is then taken. This stage
is done in order to capture the phonetically important
characteristics of speech in a manner that reflects the human
perceptual system. The Discrete Cosine Transform (DCT) is
then applied to the output to produce a cepstrum. The first
17 cepstral coefficients of the series are retained, their means
are removed, and their first order derivatives are computed.
This results in a feature vector of 34 elements, 17 MFCCs and
17 deltas. These vectors (xt) are then passed on to the training
or classification stages.

2.2. Gaussian Mixture Models (GMM). The GMM forms
the basis for both the training and classification processes.
GMM-based classifiers have shown good performance in
many applications including speech processing [11]. This is
a statistical method that classifies the speaker based on the
probability that the test data could have originated from each
speaker in the set [1, 12, 13].

2.2.1. Feature Extraction. A statistical model for each speaker
in the set is developed and denoted by λ. For instance,
speaker s in the set of size S can be written as follows:

λs =
{
wi,μi, σi

}
i = 1, . . . ,M; s = 1, . . . , S, (1)

where, w is weight, μ is mean, σ is a diagonal covariance, and
M is the number of GMM components.

A diagonal covariance is used rather than a full-
covariance matrix for the speaker model in order to simplify
the hardware design. However, this means that a greater
number of mixture components will need to be used to
provide adequate classification performance.

The training phase consists of two steps, namely initial-
ization and expectation maximization (EM). The initializa-
tion step provides initial estimates of the means for each
Gaussian component in the GMM model. The EM algorithm
recomputes the means, covariances, and weights of each
component in the GMM iteratively. Each iteration of the
algorithm provides increased accuracy in the estimates of all
three parameters. The EM algorithm formulas [1, 12, 13] are
the following:

posterior probability

p(i | xt ,λ) = pibi(xt)
∑M

k=1 pkbk(xt)
, (2)

new estimates of ith weight

wi = 1
T

T∑

t=1

p(i | xt ,λ), (3)

new estimates of mean

μi =
∑T

t=1 p(i | xt ,λ)xt
∑T

t=1 p(i | xt ,λ)
, (4)

new estimates of diagonal elements of ith covariance
matrix

σ i =
∑T

t=1 p(i | xt ,λ)(xt · xt)
∑T

t=1 p(i | xt ,λ)
− μ2

i . (5)

2.2.2. Classification. In this stage, a series of input vectors are
compared, and a decision is made as to which of the speakers
in the set is the most likely to have spoken the test data. The
input to the classification system is denoted as

X = {x1, x2, x3, . . . , xT}. (6)

The rule to determine if X has come from speaker s can be
stated as

p(λs | X) > p(λr | X) r = 1, 2, . . . , S (r /= s). (7)

Therefore, for each speaker s in the speaker set, the classifi-
cation system needs to compute and find the value of s that
maximizes p(λs | X) according to

p(λs | X) = p(X | λs)p(λs)
p(X)

. (8)

The classification is based on a comparison between the
probabilities for each speaker. If it can be assumed that the
prior probability of each speaker is equal, then the term of
p(λs) can be ignored. The term p(X) can also be ignored as
this value is the same for each speaker [1], so

p(λs | X) = p(X | λs), (9)

4 International Journal of Reconfigurable Computing

where

p(X | λs) =
T∏

t=1

p(xt | λs). (10)

Practically, the individual probabilities, p(xt | λs), are
typically in the range 10−3 to 10−8. There are 1000 test vectors
for a test input of 10 seconds. When 10−8 is multiplied by
itself 1000 times on a standard computer, and certainly any
system implemented on an FPGA, the result will underflow
and the probability for all speakers will be calculated as zero.
Thus, p(X | λs) is computed in the log domain in order
to avoid this problem. The likelihood of any speaker having
spoken the test data is then referred to as the log likelihood
and is represented by the symbol L. The formula for the log-
likelihood function is [1]

L(λs) =
T∑

t=1

ln
(
p(xt | λs)

)
. (11)

The speaker of the test data is statistically chosen by

speaker = maxSs=1L(λs). (12)

3. Hardware Implementation

The design of the hardware is based on a working system
in software. The reason for using hardware is to obtain
significant speed improvements over software and allow
processing of multiple voice streams on an increased pop-
ulation of speakers. The generation of the feature vectors
for the classification stage can either be performed offline
in software, or in an FPGA-based hardware unit. Both
the speaker models and feature vectors from the test data
are stored in random access memory (RAM) connected to
the FPGA. The specifications for the system implemented
in hardware are 32 Gaussian components in the GMM
(M = 32) using the first 17 MFCCs (after the 0th MFCC)
and their respective delta values, a population size of 20,
and five seconds of test utterance. The FPGA used for
implementation in hardware was the Xilinx XC2V6000. This
device is a mid-range FPGA and a member of the Virtex-
II family. It has a logic capacity of approximately 6 million
logic gates, 76,032 logic cells, 2,592 Kbits block RAM, 144 18
× 18 bit multipliers, 824 user I/O, and a speed grade of 4.

The formulas implemented in hardware are from (11),
(12), (13), and (14)

p(xt | λs) =
M∑

i=1

wibi(xt), (13)

b i (x) = 1
√

(2π)D|Vi|
exp
(
−1

2

(
x − μi

)′
V−1
i

(
x − μi

)
)

,

(14)

where D is the dimensionality of the data vector x, Vi is
the covariance matrix of ith component and has a diagonal
denoted by σi, μi is the mean of the ith component, wi is the
weighting of the ith component, and λ is the statistical model
of the speaker.

PCI
interface
PLX9656

XC2V6000
FF1152

256 MB
DDR RAM

PMC
connector

Front panel
connector

4 MB
SRAM bank

4 MB
SRAM bank

4 MB
SRAM bank

4 MB
SRAM bank

4 MB
SRAM bank

4 MB
SRAM bank

PCI bus

Figure 4: RC2000 reconfigurable computing board.

PCDatapathControl
FSM

Flags

RAM

Model/vector data

Model/vector dataControl signal

Control
signal

FPGA

Speaker #ID

Figure 5: Top level of speaker identification classification.

Figure 4 shows the detail of the XC2V6000 implemen-
tation platform. The RC2000 is a 64 bit PCI card utilising
a PLX-9656 PCI controller. It is capable of carrying either
one or two mezzanine boards; in our case, it hosts a
single ADM-XRC-II board from Alpha-Data. The mezzanine
board carries the XC2V6000-4, 24 Mbytes of SSRAM, and
256 Mbytes of DDR memory, along with PMC and front
panel connectors for interacting with external hardware. The
SSRAM is arranged in six 32-bit wide banks. However, the
FPGA sits between it and the host, so a portion of the FPGA
is always instantiated to act as a memory control system,
arbitrating between host access and FPGA access to this
shared resource. The control system implemented allows the
host both DMA transfer and virtual address access to the
SSRAM, and the six banks are independently arbitrated to
allow greater design flexibility.

The classification phase of the speaker identification
system was designed using separate datapath and control
circuitry. The link between the two is through control signals
and flags. Figure 5 shows the logical organization of the
top level overview of the speaker identification classification
system. The datapath section performs all the mathematical
operations, and the control system is a finite state machine
(FSM) which produces control signals based on the current
state and current inputs.

Figure 6 shows the datapath broken down further into its
individual operations. The stage computing the natural log of
the probability of each vectors having come from a particular
component of a given speaker model will be repeated as

International Journal of Reconfigurable Computing 5

Calculate log
likelihood and

select maximum

· · ·

xt xtμsi , σ
s
i , consts μsi+3, σsi+3, consts

log-add
algorithm

|ln(wi+3bi+3(xt))|

ln(p(xt|(λs)))

log probability of xt
coming from ith

component

log probability of xt
coming from ith

component

|ln(wibi(xt))|

Speaker #ID

Figure 6: Datapath broken down into 3 segments.

many times as the available resources of the FPGA allows.
All 32 components of the GMM will be multiplexed through
the available blocks. In the case of Figure 6, four repetitions
of this block are shown. With four blocks, each block will
sequentially compute eight (32/4) components worth of data
for each speaker model. The feature vectors are stored as
16 bit fixed point numbers. The normalization used means
that MFCCs require 6 bits before the binary point, and the
deltas require 9 bits before the binary point. The reciprocal
of the covariance is a 16 bit integer.

3.1. Log-Add Algorithm. The speaker identification system
must calculate the log-likelihood function, L(λs) (see (11))
for each speaker in the set. The logarithm term requires that
the logarithm of a sum (see (13)) is calculated. In software,
the individual terms of the sum are computed, summed up,
and then the logarithm is taken. Computing the individual
elements of the sum involves computing the exponential
term (see (14)), and this requires a large Lookup Table (LUT)
which is very expensive in hardware implementation. A log-
add logarithm [14, 15] is used to avoid this problem.

Equation (15) shows the basic theory behind the log add
algorithm

ln(A + B) = lnA
(

1 +
B

A

)
= lnA + ln

(
1 +

B

A

)
, (15)

where, A > B; if A < B then switch A and B in formula: For
the ln(1 + B/A) term, the system can calculate

ln
(
B

A

)
= ln(B)− ln(A). (16)

A LUT can then be used to map ln(B/A) to ln(1 + B/A).
The LUT table required here is much smaller than the one
required for calculating an exponential term. The log-add
algorithm can be used iteratively to sum more than two
terms. All iterations involve calculating the logarithm of each

+<

− log-add
table

K ln(A)

K ln(B) K ln(A + B)

Figure 7: Log-add algorithm for hardware.

term within the summation (i.e., ln(A), ln(B)) and this can
be expressed as

ln(wibi(xt)) = ln(wi)− D

2
ln(2π)− 1

2
ln(|Vi|)

− 1
2

(
xt − μi

)′
V−1
i

(
xt − μi

)
.

(17)

The hardware for the log-add algorithm is shown in Figure 7
[14, 15]. In order to maintain sufficient precision, the log-
add circuit uses 24-bit input and output data, and the lookup
table uses 16-bit data.

The datapath used to compute ln[p(xt | λs)] according
to (17) is shown in Figure 8. This is the most logic resource
intensive section of the system. The reason for this can
be seen by recognising that the datapath in Figure 8 has
34 input branches and must be executed once for each of
32 GMM components. If the datapaths were implemented in
a fully parallel manner, 34 × 32 = 1088 input paths (each
requiring two multipliers) would need to be instantiated. It
is, therefore, necessary to instantiate a smaller number and
to multiplex the data through the available units.

The number of units that can be instantiated in parallel is
determined by the number of hardware multipliers available
in the FPGA. Based on Figure 8, it can clearly be seen that
two multipliers are required per element of xt . These two can
be multiplexed together, meaning that only one multiplier is
required per input pathway.

In order to minimize the number of hardware multipliers
required, xt is represented as 16 bit data so that a single
hardware block multiplier is needed for each input pathway
in each datapath. In order to minimize loss of precision
caused by truncation of data after multiplication, the 16-
bit values are shifted before and after each multiplication
until their MSB is 1, and a record is kept as to how many
places of shift have been used, thus giving a pseudofloating
point behaviour with 16-bit mantissa. The shift-add unit
contains an adder tree with input shifters to shift each of the
input pathways by the appropriate amount before adding. Its
output result is 24-bit.

The results presented in Section 4 are based on a
hardware design that uses 2 parallel blocks (rather than
the four of Figure 6) each of which contains the circuit
of Figure 8. Each of these two parallel blocks sequentially
computes 16 components of the Gaussian mixture. The
overall requirement is therefore 68 hardware multipliers.

The likelihood computation means implementing (11)
and (12). Equation (11) requires summing the output
of the log-add algorithm for all input vectors. This was
implemented as an adder and a 32 bit register for each

6 International Journal of Reconfigurable Computing

16

16

16

1616

16

−

−
16

16

16 16

16 16

Shift-
add
unit

× ×

× ×

×0.5
24 24

+

24

24

|ln(wibi(xt))|

Constant

··
·

Meani[1] Covariancei[1]−1

xt[1]

Meani[34] Covariancei[34]−1

xt[34]

Figure 8: Dataflow diagram showing the calculation of (17).

speaker. A speaker’s register was enabled when the output
from the log-add algorithm was due to that particular
speaker’s model. While the output of the log-add algorithm
is 24 bits, the sum over 500 input vectors requires a greater
number of bits; hence, the sum is allocated 32 bits. Equation
(12) requires selecting the maximum likelihood from all
speakers. This is implemented by a tree of comparators.

4. Testing

4.1. Accuracy. The testing on speech data was carried out
on the hardware system using utterances of five seconds
duration, the same as the data used for the software testing.
The speech data used for testing was taken from the National
Institute of Standards and Technology (NIST) 2003 speaker
evaluation corpus, which consists of training and test data
from 400 mixed gender speakers. Table 1 shows the results
for both hardware and software. The accuracy of the two is
similar, but the software system shows a slight improvement
over the hardware system as the software implementation
uses full double precision accuracy. However, the difference is
tolerable given the significant speedup achieved in hardware.
A test utterance greater than 5 s should be used to achieve
higher accuracy. Further accuracy improvements can also be
achieved by removing segments of no speech from the speech
signal [12].

4.2. Timing. The timing of the hardware system can be
analyzed from two perspectives. First, the timing of the whole
system including data transfers to the RAM and second the
timing of the system without data transfers. The second
timing parameter is considered because a complete speaker
identification system will not perform the feature vector
extraction offline. A second FPGA would provide the FPGA
implementing the classification part of the system with a
feature vector every 10 ms.

The speaker identification system was run 100 times
consecutively with a size of speaker set 20. The test data used
is arbitrary as only timings are being measured. The data
transfer times and the times of the actual classification were
measured separately. This can be summed to calculate the

Table 1: Hardware and software results (percentage recognition
accuracy) for testing with 5 s test utterance.

Utterance
length

Software
(5 seconds)

Hardware
(5 seconds)

Test 1 80.77 78.30

Test 2 56.40 55.20

Test 3 68.54 64.90

Test 4 72.75 69.40

Mean 69.62 66.95

S.D 10.17 9.61

95% confidence 9.96 9.42

Table 2: Hardware and software results for testing with 5 s of test
utterance.

Parameter
System

Hardware
(XC2V6000 at 48 MHz)

Software

Data transfer
16.8 ms for 500 vector
transfer

Not applicable

Classification
(clock freq.
= 50 MHz)

0.8 ms per vector for
speaker set of size 20

69 ms per vector
for speaker set
of size 20

timing for the entire system. Table 2 presents the results from
the software testing along with the results from the hardware
testing on the XC2V6000 board, running at an overall clock
speed of 48 MHz. It shows that the hardware is about ninety
times faster than software. When measuring the data transfer
times, only the feature vectors are considered. The speaker
models are also transferred from RAM, but the time taken
for this transfer can be fully overlapped with computation.

The timing for the classification phase of the system has
units of “per vector for speaker set of size 20”. This timing
parameter is calculated by recording the time for all 100
classifications and dividing by 100 tests and 500 vectors.
The reason for using these units is that in a real-time
implementation of a speaker identification system the feature
vectors would be arriving at the classification phase at a rate

International Journal of Reconfigurable Computing 7

Table 3: Logic resources for MFCC module.

Resource type Resource requirement
Percentage utilization
(XC2V6000)

Logic slices 8696 26%

Lookup Tables 16317 24%

Flip flops 9187 14%

Block RAMs 2 1%

IO blocks 98 12%

Embedded.
Mults

1 1%

Table 4: Logic resources for classification module.

Resource type Resource requirement
Percentage utilization
(XC2V6000)

Logic slices 21233 63%

Lookup Tables 34193 50%

Flip flops 12612 18%

Block RAMs 30 21%

IO blocks 437 53%

Embedded.
Mults

68 47%

of one every 10 ms. Regardless of the size of the speaker set,
the system only has 10 ms to perform all calculations for each
component of each speaker model. With a speaker set of size
20, the system performance (0.8 ms) is well within the 10 ms
timing specification. To fully utilize the time available more
speaker models or more than one input speech signal can be
processed.

This timing parameter can be calculated as

timing for a full system

=
(

16.8
500

)
+ 0.8

= 0.8336 ms per vector for speaker set of size 20.

(18)

4.3. Resources. The logic resources required for the compo-
nents of the design are shown in Tables 3 and 4. Table 3 shows
the logic requirements for a signal instance of the MFCC
feature vector extraction unit. Due to the low frequency
of speech data and fully pipelined nature of the MFCC
datapath, a very large number of speech streams can be
multiplexed through one MFCC unit.

Table 4 shows the logic requirements of the classification
module, running at 48 MHz, and using two parallel copies of
the log-probability computation unit of Figure 8.

5. Conclusions

The analysis of hardware versus software demonstrated that
speaker identification classification is about ninety times
faster in hardware. This means that the hardware system
is capable of processing ninety times more audio streams
in real time than could be done in standard computer.

In terms of accuracy, software only slightly out performs
the hardware. This is due to the double-precision accuracy
used in the software system. Given the hardware timing
improvements over software and the similarity in accuracy,
it can be concluded that the speaker identification system is
well suited for implementation in hardware.

The limiting factor for implementation on the XC2V6000
device is the number of multipliers and its maximum clock
speed. The future improvement steps will be generating
a real-time implementation of open-set text-independent
speaker identification with greater length of speech utter-
ance. The design will also be optimized to reduce latency
and to optimize use of memory on the latest Xilinx FPGA
platform.

References

[1] D. A. Reynolds and R. C. Rose, “Robust text-independent
speaker identification using Gaussian mixture speaker mod-
els,” IEEE Transactions on Speech and Audio Processing, vol. 3,
no. 1, pp. 72–83, 1995.

[2] S. Melnikoff, S. F. Quigley, and M. Russell, “Speech recognition
on an FPGA using discrete and continuous hidden Markov
models,” in Proceedings of the International Workshop on Field-
Programmable Logic, pp. 202–211, 2002.

[3] S. Melnikoff, S. F. Quigley, and M. Russell, “Implementing a
simple continuous speech recognition system on an FPGA,” in
Proceedings of IEEE Symposium on Field Programmable Custom
Computing Machines, pp. 275–276, Los Alamitos, Calif, USA,
2002.

[4] K. Miura, H. Noguchi, H. Kawaguchi, and M. Yoshimoto,
“A low memory bandwidth gaussian mixture model (GMM)
processor for 20,000-word real-time speech recognition FPGA
system,” in Proceedings of the International Conference on
Field-Programmable Technology (ICFPT ’08), pp. 341–344,
December 2008.

[5] S. Yoshizawa, N. Wada, N. Hayasaka, and Y. Miyanaga,
“Scalable architecture for word HMM-based speech recog-
nition and VLSI implementation in complete system,” IEEE
Transactions on Circuits and Systems I, vol. 53, no. 1, pp. 70–
77, 2006.

[6] E. C. Lin and R. A. Rutenbar, “A multi-FPGA 10x-real-time
high-speed search engine for a 5000-word vocabulary speech
recognizer,” in Proceedings of the 7th ACM SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’09),
pp. 83–92, February 2009.

[7] R. Ramos-Lara, M. López-Garcı́a, E. Cantó-Navarro, and L.
Puente-Rodriguez, “SVM speaker verification system based
on a low-cost FPGA,” in Proceedings of the 19th International
Conference on Field Programmable Logic and Applications (FPL
’09), pp. 582–586, September 2009.

[8] J. N. Holmes and W. Holmes, Speech Synthesis and Recognition,
CRC Press, 2001.

[9] R. Vergin, D. O’Shaughnessy, and A. Farhat, “Generalized mel
frequency cepstral coefficients for large-vocabulary speaker-
independent continuous-speech recognition,” IEEE Transac-
tions on Speech and Audio Processing, vol. 7, no. 5, pp. 525–532,
1999.

[10] M. Hassan, M. Jamil, M. Rabbani, and M. Rahman, “Speaker
identification using Mel frequency cepstral coefficients,” in
Proceedings of the 3rd International Conference on Electrical &
Computer Engineering, pp. 565–568, 2004.

8 International Journal of Reconfigurable Computing

[11] M. Shi and A. Bermak, “An efficient digital VLSI imple-
mentation of Gaussian mixture models-based classifier,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 9, Article ID 1715329, pp. 962–974, 2006.

[12] R. Auckenthaler, Test-independent speaker identification with
limited resources, Ph.D. thesis, University of Wales, 2001.

[13] J. N. Holmes and W. J. Holmes, Speech Synthesis and
Recognition, Taylor & Francis, London, UK, 2nd edition, 2002.

[14] S. J. Melnikoff and S. F. Quigley, “Implementing log-add
algorithm in hardware,” Electronics Letters, vol. 39, no. 12, pp.
939–941, 2003.

[15] S. Melnikoff, Speech Recognition in Programmable Logic, Ph.D.
thesis, University of Birmingham, 2003.

